Anonymous Transactions with Revocation and Auditing in Hyperledger Fabric

Anonymous Credentials, Revocation, Auditing, Blockchain
[10] DOI: 101007/978-3-030-92548-2_23

Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoul, Bjorn Tackmann
dmytroabu.edu, adcazurich.ibm.com, kao@zurich.ibm.com
bjoern@dfinity.org

Built from bc167548 on December 25, 2021

Boston University
Graduate School of Arts and Sciences
Department of Computer Science

https://doi.org/10.1007/978-3-030-92548-2_23
mailto:dmytro@bu.edu
mailto:adc@zurich.ibm.com
mailto:kao@zurich.ibm.com
mailto:bjoern@dfinity.org
https://git.dbogatov.org/bu/ibm/cans-presentation/commit/bc167548

BACKGROUND

- Permissioned blockchains explicitly register their participants
logistics network, bank transactions, know-your-customer and anti-money-laundering regulations

- Permissioned blockchains explicitly register their participants

logistics network, bank transactions, know-your-customer and anti-money-laundering regulations
- Prove the permission to post a transaction without revealing identity

- arbitrary length of delegation chain

- dynamically embedding an arbitrary number of attributes

- efficient and integrated with the blockchain

- Permissioned blockchains explicitly register their participants
logistics network, bank transactions, know-your-customer and anti-money-laundering regulations
- Prove the permission to post a transaction without revealing identity
- arbitrary length of delegation chain
- dynamically embedding an arbitrary number of attributes
- efficient and integrated with the blockchain
- Revocation and audit
- Prove AGE > 21 using driving license without reveling your name and issuing state
delegatable anonymous credentials

- Permissioned blockchains explicitly register their participants
logistics network, bank transactions, know-your-customer and anti-money-laundering regulations

- Prove the permission to post a transaction without revealing identity
- arbitrary length of delegation chain
- dynamically embedding an arbitrary number of attributes
- efficient and integrated with the blockchain
- Revocation and audit
- Prove AGE > 21 using driving license without reveling your name and issuing state

delegatable anonymous credentials
- Allow a state to suspend (revoke) the driving license at any time

privacy-preserving revocation

- Permissioned blockchains explicitly register their participants
logistics network, bank transactions, know-your-customer and anti-money-laundering regulations
- Prove the permission to post a transaction without revealing identity
- arbitrary length of delegation chain
- dynamically embedding an arbitrary number of attributes
- efficient and integrated with the blockchain

- Revocation and audit
- Prove AGE > 21 using driving license without reveling your name and issuing state

delegatable anonymous credentials
- Allow a state to suspend (revoke) the driving license at any time

privacy-preserving revocation
- Allow a federal investigator to inspect the entire license at a later date with a warrant

auditing along with proving that the credential is “auditable”

Hyperledger Fabric [8]

?

|
|
I |
SDK I Ord I
| MSP raerer
I |

LLLULL 1 L L Ll
Client / User I - t - - E - - |
S - - - !
-0 -0 -0 1_F.

rrnni
' Peer Peer Peer Orderer !
e J

Components

Clients invoke TXs and observe their results
Peers execute and validate TXs

Orderers determine the order of TXs and dis-
tribute the blocks to peers

MSP maintains & manages IDs of all members

[

Hyperledger Fabric [8]

?

|
|
| |
| |
SDK i MSP Orderer I
| |
LLLLl |
Client / User I - t - - - L |
L3 : 1 & 1 E
I m@ -I-m@ Tm@ i L ILELELIL -
! Peer Peer Peer Orderer !
J
Components Execute-Order-Validate
Clients invoke TXs and observe their results - Client sends TX proposal to endorsers
Peers execute and validate TXs - Endorsers execute TX, sign read/write sets
Orderers determine the order of TXs and dis- - Client prepares TX, sends to orderers
tribute the blocks to peers - Orderers puts TX in block, distributes

MSP maintains & manages IDs of all members - All peers validate TX

[

Deleagtable Anonymous Credentials [7]

-
Delegate Delegate

Root Verify

A A

Intermediate P¢'€93€ | |ntermediate
Delegate l Delegate
—
\
User User
Present

L

Deleagtable Anonymous Credentials [7]

- KEYGEN(sp) —s (csk, cpk)
Delegate Delegate generate a pair of keys for the caller (root, intermediate, user)

Root Verify

A A

Intermediate P¢'€93€ | |ntermediate
Delegate l Delegate
—
\
User User
Present

L

Deleagtable Anonymous Credentials [7]

Delegate

A

?

Delegate

User

Present

Intermediate

L

-
Delegate
Root Verify
Delegate | |hiermediate
l Delegate
—
User

- KEYGEN(sp) —s (csk, cpk)

generate a pair of keys for the caller (root, intermediate, user)

- DELEGATE(csk;, cred;, cpki 4, diyq) —3scred;,q

Level-i authority produces credentials of the Level-(i + 1)

binding attributes dj4 to public key cpk,,

Deleagtable Anonymous Credentials [7]

Delegate

A

?

Delegate

User

Present

Intermediate

L

-
Delegate
Root Verify
Delegate

l Delegate

User

Intermediate

- KEYGEN(sp) —s (csk, cpk)

generate a pair of keys for the caller (root, intermediate, user)

- DELEGATE(csk;, cred;, cpki 4, diyq) —3scred;,q

Level-i authority produces credentials of the Level-(i + 1)
binding attributes dj4 to public key cpk,,

- PRESENT(csk,, credy, cpkg, (@) (i jep, M) —*s Pered

shows the validity of cred, under cpk,, proves that secret key
csk, matches cred; and disclosed attributes (a; ;)i jep, Signs m

Deleagtable Anonymous Credentials [7]

- KEYGEN(sp) —s (csk, cpk)

-
Delegate Delegate generate a pair of keys for the caller (root, intermediate, user)
Root Verify - DELEGATE(csk;, cred;, cpki 4, diyq) —3scred;,q
' I ' I Level-i authority produces credentials of the Level-(i + 1)
Q (Q binding attributes dj4 to public key cpk,,
Intermediate P®'®93® | |ntermediate - PRESENT(csk,, credy, cpkg, (@) (i jep, M) —*s Pered
Delegate l Delegate shows the validity of cred, under cpk,, proves that secret key
csk, matches cred; and disclosed attributes (a; ;)i jep, Signs m
* VERIFY(Bcred, CPKo, (i) (i)ep, M) — {0, 1}
Y verifies the correctness of P4 relative to disclosed attributes
User User (ai))(ijep, message m and public key cpk,
Present
l

Deleagtable Anonymous Credentials [7]

- KEYGEN(sp) —s (csk, cpk)

-
Delegate Delegate generate a pair of keys for the caller (root, intermediate, user)
Root Verify - DELEGATE(csk;, cred;, cpki 4, diyq) —3scred;,q
m m Level-i authority produces credentials of the Level-(i + 1)
Q] (Q binding attributes dj4 to public key cpk,,
Intermediate P®'®93® | |ntermediate - PRESENT(csk,, credy, cpkg, (@) (i jep, M) —*s Pered
Delegate l Delegate shows the validity of cred, under cpk,, proves that secret key
1) -~ csk, matches cred; and disclosed attributes (a; ;)i jep, Signs m
* VERIFY(Bcred, CPKo, (i) (i)ep, M) — {0, 1}
Y verifies the correctness of P4 relative to disclosed attributes
User User (ai))(ijep, message m and public key cpk,
Present - Instantiated with Groth [5] and Schnorr [1] signature
l schemes in [7]

IMPROVED CONSTRUCTION

Revocation

General approach
- Revocation is inherently at odds with anonymity

- We couple epoch-based whitelisting with signatures
In a way thatyields efficient proofs of non-revocation

- Epochs defined in terms of blockchain heigh
- Epoch handle (signature) binds public key to epoch

Revocation

General approach Instantiation
- Revocation is inherently at odds with anonymity - Simple way: epoch as an attribute
- We couple epoch-based whitelisting with signatures - Explicit proof of non-revocation
In a way thatyields efficient proofs of non-revocation allows to decouple credential issuer and
- Epochs defined in terms of blockchain heigh revocation authority
+ Epoch handle (signature) binds public key to epoch = gsh(epoch)

o <—s GROTH.SIGN(rsk; e, cpk)

Revocation

General approach Instantiation
- Revocation is inherently at odds with anonymity - Simple way: epoch as an attribute
- We couple epoch-based whitelisting with signatures - Explicit proof of non-revocation
in a way that yields efficient proofs of non-revocation allows to decouple credential issuer and
- Epochs defined in terms of blockchain heigh revocation authority
+ Epoch handle (signature) binds public key to epoch = gsh(epoch)

o <—s GROTH.SIGN(rsk; e, cpk)
P s NIZK{(o1,...L, Cpkq_ 1, (Qij)(ij)¢p, Tm, O)
/\ GROTHy.VERIFY(CpK; 4; 07 CPK;, i, - ., Q)
=24 .1
/\ GROTH,.VERIFY(cpk;_1; 07 CPy, i, ., Qi)
i=1.3,....L
A SCHNORR.VERIFY(CpK,; om; m)

AGROTH.VERIFY(rpk; o; e, cpk,)

——

General approach

- TX author embeds her ID (public key) encrypted
under the auditor’s public key

- Prove that the user encrypts her own public key
and uses the public key of the authorized auditor

General approach Instantiation
- TX author embeds her ID (public key) encrypted - User generates ElGamal secret and
under the auditor’s public key public keys (ask, apk = g*=¥)
- Prove that the user encrypts her own public key + Encrypts with enc = (cpk, - apk”, g”)
and uses the public key of the authorized auditor + Auditor decrypts enc

guaranteed to succeed

General approach Instantiation
- TX author embeds her ID (public key) encrypted - User generates ElGamal secret and
under the auditor’s public key public keys (ask, apk = g*=¥)
- Prove that the user encrypts her own public key + Encrypts with enc = (cpk, - apk”, g”)
and uses the public key of the authorized auditor + Auditor decrypts enc

guaranteed to succeed

.....

L
/\ GROTH.VERIFY(cpK;_;; o7; pk;, Gy, - -, Q1))
1=2,4
L
/\ GROTH,.VERIFY(cpK;_q; 07 CP;, i, - .., Qi)
i=13,...

geen

A SCHNORR.VERIFY(Cpk,; om; m)
A GROTH.VERIFY(rpk; o; €, cpk,)

Aenc = (cpk, - apk”, g”)

——

Optimizations

Performance optimizations

- Simplified the pseudocode in [7] and corrected
mistakes

Optimizations

Performance optimizations

- Simplified the pseudocode in [7] and corrected
mistakes

- Parallelized on the granularity of commitments

Optimizations

Performance optimizations Require: a; € Gy, b; € Gy, ¢; € Zy U L for
- Simplified the pseudocode in [7] and corrected L=1...,n) |
mistakes Ensure: EPRODUCT((a;, b;, ¢))i_,) = [1., e(a;, b;)“
- Parallelized on the granularity of commitments 1. procedure EPRobUCT((a;, by, ¢))",)
- Optimal Miller's loop and final exponentiation 2 r=hreGr > an identity element
3 fori=(,...,n)do
4 if c; # L then
5 a; == a;
[1e(ai, b)) = rexp (Hf(af’, bi)) = FEXP (Hf(ai, bf’)) 6. fori=(1,3,...,n)do
’ i ' 7 if g, # L then
8: > 5 is a more efficient version of t - 1
o: r:=r-t(a;,bi, a1, bisy)
10: else
11: r:=r-t(a,b;)

12: return FEXP ()

Integration with Fabric. Setup.

1: Level-i CA Level-(i + 1) CA

csk;

21 CSkj«$Zg,Ccpki =g CSKiyq 8 Zq, CpK;,q = f+1

3: nonce<+s{0,1}* NQNCE Pk <—$ PROVEPK(cskj 4, cpk; 4, nonce)

4 VERIFYPK(PBpk, cpki, 4, nonce) PBok: CPKipq

5: 0jp1 < GROTH.SIGN(cskj; cpkiy 4, disq) Ti41 crediy s == (0iy1, digq, CPKiLq)

Integration with Fabric. Revocation.

Revocation
1: Revocation authority User

rsk csk

21 ISk<$Zg,rpk:=g csk«$Zq,cpk =g

3: nonce+s{0,1}* nonce PBok < PROVEPK(csk, cpk, nonce)

4 VERIFYPK(Bpk, cpk, nonce) Pk, cpk

5: o <$NRSIGN(rsk; cpk, epoch) o o,epoch

Integration with Fabric. Transaction submission.

Transaction submission

1. Verifier User
2: cred := ({0}, @}, cpk;)i_;)

3: enc, p := AUDITENC(apk, cpk)

4 SKnym» PKnym <= MAKENYM(Csk)

5 Prev <8 NRPROVE(a, Csk, sk, epoch)

6: Paudit <$ AUDITPROVE(eNC, p, cpk, csk, pkyym, SKnym)
7: Pered <= CREDPROVE(cred, D, sy, sk, 1)

8 : Onym <=$ SIGNNYM(PKpym, SKyym, €K, tX)

9: (Pered, Prev, Paudit, €NC, X, Py) M, Tnym m = (Bered> Prev, Paudit, €NC, X, PKoy)

100 VERIFYNYM(PKym, tX, onym)

1 NRVERIFY(PBrev, PKqym, €poch)
121 AUDITVERIFY(Baydit, €NC, PKpym)
CREDVERIFY(PBered; D, PKoym, L)

EXPERIMENTAL EVALUATION

- Implemented a stand-alone production-ready library in Go [9]
470 tests cover 100 % of the code

- Apache Milagro Cryptographic Library (AMCL) [11] with a 254-bit Barreto-Naehrig curve [2]
- Benchmarks run on c2-standard-60 GCE VM running Ubuntu 18.04

all benchmarked operations were run 100 times
- Default number of levels and attributes per levelare L=2and n =2
- Implemented a distributed prototype of Fabric using our scheme
- Setup is different from the base scheme in [7/]
- Aiming to answer 6 evaluation questions

10

Question 1: what is the optimizations’ performance benefit?

CREDPROVE CREDVERIFY

e-product Parallelization Big Small Big Small

disabled disabled 2873 843 1523 948
enabled disabled 1312 341 853 372
disabled enabled 1480 357 890 352
enabled enabled 890 191 391 197

Improvement (~ times) 32 44 39 48

Optimizations benchmark for L =2 and n = 2 (small) and L = 5 and n = 3 (big).
The values are in milliseconds.

1

Question 2: how does the scheme scale with the number of levels and attributes?

41ms 5Ims 63ms 72ms 82 ms
1 89ms 110ms 116ms 153 ms 173 ms
398B 5348 670B 8068 942 B

94 ms 138 ms 192ms 255ms 315ms
2 124ms 158 ms 198 ms 262ms 310 ms
801B 1.2kB 1.6kB 2.0kB 2.4 kB

1773ms 27/73ms 367/ms 516ms 616 ms
3 188 ms 249ms 329ms 387/ms 427 ms
1.2kB 1.7kB 23kB 2.8kB 3.3kB

333ms 542ms 661Tms 891ms 1146 ms
5 276 ms 342ms 391ms 500ms 648 ms
20kB 29kB 3.9kB 4.8kB 5.7kB

Parameters benchmark. In each cell the top value is a proof generation overhead, the middle value is a proof
verification overhead and the bottom value is the proof size. 9

Question 3: what overhead do our extensions impose?

Time Time
Procedure Procedure

G1 G2 G1 G2
GROTH.KEYGEN 1.6 4.7 GROTH.SIGN 16 41
GROTH.RANDOMIZE 11 23 GROTH.VERIFY 53 62
SCHNORR.SIGN 1.6 4.8 SCHNORRVERIFY 2 9.6
AUDITENCRYPT 3 9.4 NRSIGN 14 30
AUDITPROVE 5.8 24 NRPROVE 66 88
AUDITVERIFY 9.2 39 NRVERIFY 127 149
MAKENYM 2.1 9.4 PROVEPK 3.1 9.4
SIGNNYM 2.2 9.9 VERIFYPK 2 95
VERIFYNYM 3.5 14 KEYGEN 1.5 4.2

Running time of extensions in milliseconds.

13

Question 4: how does the system compare to the old non-delegatable idemix?

- Ran workloads against current (non-delegatable) Fabric idemix and regular MSP
generating secrets, signing and verifying identities

- Idemix in Fabric [6] uses BBS+ signatures [3]
ran actual Fabric code

- Default (not-idemix) Fabric MSP simply uses X.509 certificates and ECDSA algorithms [4]
ran ECDSA routines in Go crypto module using P-384 curve — most secure option in Fabric

- Results show the relative costs of using more privacy-preserving solutions

- default MSP takes 21 ms
- idemix MSP in Fabric takes 108 ms
- our solution takes 210 ms

14

Question 5: how practical is maintaining a single and possibly distributed revocation authority?

1 M transaction Ml transaction-proposal [l endorsement [l non-revocation-request non-revocation-handle [l credentials — Real latency (ms) — Ideal latency (ms) :215

©
PRI

1 A [e] i g W ’1 3
b , ‘

ks JMMMLMMMMM

Intervals (20 milliseconds each)

= (o2}
P

N

Number of objects in the network per interval

N
3
ensjul sed spuoossijjiw uj Joalqo jsemoys ayj jo Aousie]

Network log visualization (subset is shown, 18 transactions). Interval size is 20 ms. Experiment involves 5 users, 3
peers, 2 endorsements, 20KiB/s and 50 KiB/s local and global bandwidths, and epoch length 5 seconds. Bars
show objects in the network, lines show latencies (green for ideal, red for real). Latency scale is logarithmic.

- Despite short epochs (5 seconds), revocation requests do not result in any spikes in latency
- Overhead of issuing the non-revocation handle is 15 ms-30 ms — a fraction of total overhead
- We observed a stable 200 requests per second throughput on our testing machine

15

Question 6: what is the efficacy of the entire blockchain stack using our protocol?

Zone 1 (us-centrall-a) I |
| LLLLIL | LLLLI m |
- 4 - E E - 16 C User in Org 2 E
- vcPus O g - vepus [:
= e ! g ! = - !
LILILELIL =X L LI \
[RREE| Revocation authority 12 | Peer :
{2 F pid 2 i
= VCPUs |- ! | = vCPUs H
! et po . User in Org 2 i
! Root authority |1 Org 2 authority i
Ping 33.2 ms Ping 12.4 ms
Zone 3 (us-east4-c)
! 2
i LLLLI LLLL] vCPUs
=1 16 - =1 16 = Org 1 authority |
-1 vcrpus C = vcpus [C i
LILBLELIL LI
Peer Peer
Userin Org 1 Userin Org 1 Userin Org 1

1600
1400
1200
1000
800
600
400
200

— tr T 1 1 — 1 1
] SIS N oo I) N o 2 L
FLSS S
SEFQ SR
T &L
&
Extensions Endorsements Users Peers Minimal

- Number of endorsements does not

significantly affect the overhead
endorsements are processed in parallel

- Number of users influences the overhead

substantially
Each user increases TXs validated by a single peer

- Number of peers is positively correlated

with the overhead
TX is completed when the last peer validates it

16

Anonymous Transactions with Revocation and Auditing in Hyperledger Fabric

Anonymous Credentials, Revocation, Auditing, Blockchain
[10] DOI: 101007/978-3-030-92548-2_23

Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoul, Bjorn Tackmann
dmytroabu.edu, adcazurich.ibm.com, kao@zurich.ibm.com
bjoern@dfinity.org

Built from bc167548 on December 25, 2021

Boston University
Graduate School of Arts and Sciences
Department of Computer Science

https://doi.org/10.1007/978-3-030-92548-2_23
mailto:dmytro@bu.edu
mailto:adc@zurich.ibm.com
mailto:kao@zurich.ibm.com
mailto:bjoern@dfinity.org
https://git.dbogatov.org/bu/ibm/cans-presentation/commit/bc167548

References |

REFERENCES

[1] Claus P. Schnorr. “Efficient identification and signatures for smart cards”. In: Advances in
Cryptology — CRYPTO. Ed. by Gilles Brassard. Vol. 435. LNCS. Springer, 1989, pp. 239-252.

[2] Paulo SLM Barreto and Michael Naehrig. “Pairing-friendly elliptic curves of prime order”.
In: International Workshop on Selected Areas in Cryptography. Springer. 2005, pp. 319-331.

[3] Man Ho Au, Willy Susilo, and Yi Mu. “Constant-size dynamic k-TAA". In: International con-
ference on security and cryptography for networks. Springer. 2006, pp. 111-125.

[4] National Institute of Standards and Technology. FIPS PUB 186-4: Digital Signature Stan-
dard. National Institute for Standards and Technology, July 2013. URL: https://nvipubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

17

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

References i

[5] Jens Groth. “Efficient fully structure-preserving signatures for large messages”. In: Interna-
tional Conference on the Theory and Application of Cryptology and Information Security.
Springer. 2015, pp. 239-259.

[6] Jan Camenisch, Manu Drijvers, and Anja Lehmann. “Anonymous Attestation Using the Strong
Diffie-Hellman Assumption Revisited”. In: Trust and Trustworthy Computing. Springer In-
ternational Publishing, 2016, pp. 1-20.

[7] Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. “Practical UC-secure delegatable
credentials with attributes and their application to blockchain”. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. ACM. 2017, pp. 683-699.

[8] Elli Androulaki et al. “Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains”. In: Proceedings of the Thirteenth EuroSys Conference. EuroSys "18. 2018, 30:1-
30:15. p01: 10.1145/3190508.3190538.

[9] Dmytro Bogatov. Delegatable Anonymous Credentials library. https://github.com/
dbogatov/dac-1ib. 2021.

18

https://doi.org/10.1145/3190508.3190538
https://github.com/dbogatov/dac-lib
https://github.com/dbogatov/dac-lib

References iii

[10] Dmytro Bogatov et al. “Anonymous Transactions with Revocation and Auditing in Hyper-
ledger Fabric”. In: Cryptology and Network Security. Springer International Publishing, 2021,
pp. 435-459. D0OI: 10.1007/978-3-030-92548-2_23.

[11] Michael Scott. “The Apache Milagro Crypto Library”. In: (). UrL: https://github.com/
MIRACL/amcl.

19

https://doi.org/10.1007/978-3-030-92548-2_23
https://github.com/MIRACL/amcl
https://github.com/MIRACL/amcl

	Background
	Improved Construction
	Experimental Evaluation
	References

