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- Revocation and audit
- Prove AGE > 21 using driving license without reveling your name and issuing state

delegatable anonymous credentials
- Allow a state to suspend (revoke) the driving license at any time

privacy-preserving revocation
- Allow a federal investigator to inspect the entire license at a later date with a warrant

auditing along with proving that the credential is “auditable”
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Delegate l Delegate shows the validity of cred, under cpk,, proves that secret key
1) -~ csk, matches cred; and disclosed attributes (a; ;)i jep, Signs m
* VERIFY(Bcred, CPKo, (i) (i)ep, M) — {0, 1}
Y verifies the correctness of P4 relative to disclosed attributes
User User (ai))(ijep, message m and public key cpk,
Present - Instantiated with Groth [5] and Schnorr [1] signature
l schemes in [7]
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Optimizations

Performance optimizations Require: a; € Gy, b; € Gy, ¢; € Zy U L for
- Simplified the pseudocode in [7] and corrected L=1...,n ) |
mistakes Ensure: EPRODUCT((a;, b;, ¢))i_,) = [ 1., e(a;, b;)“
- Parallelized on the granularity of commitments 1. procedure EPRobUCT((a;, by, ¢))",)
- Optimal Miller's loop and final exponentiation 2 r=hreGr > an identity element
3 fori=(,...,n)do
4 if c; # L then
5 a; == a;
[1e(ai, b)) = rexp (Hf(af’, bi)) = FEXP (Hf(ai, bf’)) 6. fori=(1,3,...,n)do
’ i ' 7 if g, # L then
8: > 5 is a more efficient version of t - 1
o: r:=r-t(a;,bi, a1, bisy)
10: else
11: r:=r-t(a,b;)

12: return FEXP ()




Integration with Fabric. Setup.

1: Level-i CA Level-(i + 1) CA

csk;

21 CSkj«$Zg,Ccpki =g CSKiyq 8 Zq, CpK;,q = f+1

3: nonce<+s{0,1}* NQNCE Pk <—$ PROVEPK(cskj 4, cpk; 4, nonce)

4 VERIFYPK(PBpk, cpki, 4, nonce) PBok: CPKipq

5:  0jp1 < GROTH.SIGN(cskj; cpkiy 4, disq) Ti41 crediy s == (0iy1, digq, CPKiLq)




Integration with Fabric. Revocation.

Revocation
1: Revocation authority User

rsk csk

21 ISk<$Zg,rpk:=g csk«$Zq,cpk =g

3: nonce+s{0,1}* nonce PBok < PROVEPK(csk, cpk, nonce)

4 VERIFYPK(Bpk, cpk, nonce) Pk, cpk

5: o <$NRSIGN(rsk; cpk, epoch) o o,epoch




Integration with Fabric. Transaction submission.

Transaction submission

1. Verifier User
2: cred := ({0}, @}, cpk;)i_;)

3: enc, p := AUDITENC(apk, cpk)

4 SKnym» PKnym <= MAKENYM(Csk)

5 Prev <8 NRPROVE(a, Csk, sk, epoch)

6: Paudit <$ AUDITPROVE(eNC, p, cpk, csk, pkyym, SKnym)
7: Pered <= CREDPROVE(cred, D, sy, sk, 1)

8 : Onym <=$ SIGNNYM(PKpym, SKyym, €K, tX)

9: (Pered, Prev, Paudit, €NC, X, Py ) M, Tnym m = (Bered> Prev, Paudit, €NC, X, PKoy)

100 VERIFYNYM(PKym, tX, onym)

1 NRVERIFY(PBrev, PKqym, €poch)
121 AUDITVERIFY(Baydit, €NC, PKpym)
CREDVERIFY(PBered; D, PKoym, L)




EXPERIMENTAL EVALUATION




- Implemented a stand-alone production-ready library in Go [9]
470 tests cover 100 % of the code

- Apache Milagro Cryptographic Library (AMCL) [11] with a 254-bit Barreto-Naehrig curve [2]
- Benchmarks run on c2-standard-60 GCE VM running Ubuntu 18.04

all benchmarked operations were run 100 times
- Default number of levels and attributes per levelare L=2and n =2
- Implemented a distributed prototype of Fabric using our scheme
- Setup is different from the base scheme in [7/]
- Aiming to answer 6 evaluation questions

10




Question 1: what is the optimizations’ performance benefit?

CREDPROVE  CREDVERIFY

e-product Parallelization Big Small Big Small

disabled disabled 2873 843 1523 948
enabled  disabled 1312 341 853 372
disabled enabled 1480 357 890 352
enabled enabled 890 191 391 197

Improvement (~ times) 32 44 39 48

Optimizations benchmark for L =2 and n = 2 (small) and L = 5 and n = 3 (big).
The values are in milliseconds.

1




Question 2: how does the scheme scale with the number of levels and attributes?

41ms 5Ims 63ms 72ms 82 ms
1 89ms 110ms 116ms 153 ms 173 ms
398B 5348 670B 8068 942 B

94 ms 138 ms 192ms 255ms 315ms
2 124ms 158 ms 198 ms 262ms 310 ms
801B 1.2kB 1.6kB 2.0kB 2.4 kB

1773ms 27/73ms 367/ms 516ms 616 ms
3 188 ms 249ms 329ms 387/ms 427 ms
1.2kB 1.7kB 23kB 2.8kB 3.3kB

333ms 542ms 661Tms 891ms 1146 ms
5 276 ms 342ms 391ms 500ms 648 ms
20kB 29kB 3.9kB 4.8kB 5.7kB

Parameters benchmark. In each cell the top value is a proof generation overhead, the middle value is a proof
verification overhead and the bottom value is the proof size. 9




Question 3: what overhead do our extensions impose?

Time Time
Procedure Procedure

G1 G2 G1 G2
GROTH.KEYGEN 1.6 4.7 GROTH.SIGN 16 41
GROTH.RANDOMIZE 11 23 GROTH.VERIFY 53 62
SCHNORR.SIGN 1.6 4.8 SCHNORRVERIFY 2 9.6
AUDITENCRYPT 3 9.4 NRSIGN 14 30
AUDITPROVE 5.8 24 NRPROVE 66 88
AUDITVERIFY 9.2 39 NRVERIFY 127 149
MAKENYM 2.1 9.4 PROVEPK 3.1 9.4
SIGNNYM 2.2 9.9 VERIFYPK 2 95
VERIFYNYM 3.5 14 KEYGEN 1.5 4.2

Running time of extensions in milliseconds.

13



Question 4: how does the system compare to the old non-delegatable idemix?

- Ran workloads against current (non-delegatable) Fabric idemix and regular MSP
generating secrets, signing and verifying identities

- Idemix in Fabric [6] uses BBS+ signatures [3]
ran actual Fabric code

- Default (not-idemix) Fabric MSP simply uses X.509 certificates and ECDSA algorithms [4]
ran ECDSA routines in Go crypto module using P-384 curve — most secure option in Fabric

- Results show the relative costs of using more privacy-preserving solutions

- default MSP takes 21 ms
- idemix MSP in Fabric takes 108 ms
- our solution takes 210 ms

14




Question 5: how practical is maintaining a single and possibly distributed revocation authority?

1 M transaction Ml transaction-proposal [l endorsement [l non-revocation-request non-revocation-handle [l credentials — Real latency (ms) — Ideal latency (ms) :215

©
PRI

1 A [ e ] i g W ’1 3
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Intervals (20 milliseconds each)

= (o2}
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Number of objects in the network per interval
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Network log visualization (subset is shown, 18 transactions). Interval size is 20 ms. Experiment involves 5 users, 3
peers, 2 endorsements, 20KiB/s and 50 KiB/s local and global bandwidths, and epoch length 5 seconds. Bars
show objects in the network, lines show latencies (green for ideal, red for real). Latency scale is logarithmic.

- Despite short epochs (5 seconds), revocation requests do not result in any spikes in latency
- Overhead of issuing the non-revocation handle is 15 ms-30 ms — a fraction of total overhead
- We observed a stable 200 requests per second throughput on our testing machine

15




Question 6: what is the efficacy of the entire blockchain stack using our protocol?

Zone 1 (us-centrall-a) I |
| LLLLIL | LLLLI m |
- 4 - E E - 16 C User in Org 2 E
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- Number of endorsements does not

significantly affect the overhead
endorsements are processed in parallel

- Number of users influences the overhead

substantially
Each user increases TXs validated by a single peer

- Number of peers is positively correlated

with the overhead
TX is completed when the last peer validates it
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