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Abstract—In permissioned blockchain systems, participants
are admitted to the network by receiving a credential from
a certification authority. Each transaction processed by the
network is required to be authorized by a valid participant who
authenticates via her credential. Use case settings where privacy is
a concern thus require proper privacy-preserving authentication
and authorization mechanisms.

Anonymous credential schemes allow a user to authenticate
while showing only those attributes necessary in a given setting.
This makes them a great tool for authorizing transactions in
permissioned blockchain systems based on the user’s attributes.
In most setups, there is one distinct certification authority for
each organization in the network. Consequently, the use of plain
anonymous credential schemes still leaks the association of a
user to the organization that issued her credentials. Camenisch,
Drijvers and Dubovitskaya (CCS 2017) therefore suggest the use
of a delegatable anonymous credential scheme to also hide that
remaining piece of information.

In this paper, we propose the revocation and auditability
— two functionalities that are necessary for real-world adop-
tion — and integrate them into the scheme. We present a
complete protocol, its security definition and the proof, and
provide its open-source implementation. Our distributed-setting
performance measurements show that the integration of the
scheme with Hyperledger Fabric, while incurring an overhead in
comparison to the less privacy-preserving solutions, is practical
for settings with stringent privacy requirements.

I. INTRODUCTION

Blockchain systems allow two or more mutually distrustful
parties to perform transactions by appending them to a shared
ledger without the need to rely on a trusted third party. The
first and still most prominent use of blockchains is in the area
of cryptocurrencies where each transaction transfers fungible
tokens between two or more parties. Blockchain systems used
for cryptocurrencies are usually permissionless, meaning that
joining the system does not require the parties to register their
identity; everyone can participate.

Many other application scenarios for blockchains, however,
require the participants to be registered, and access to the
blockchain system to be permissioned. For instance, use cases
in the financial domain are restricted by know-your-customer
(KYC) or anti-money-laundering (AML) regulations. Elections

require the set of eligible voters to be known in order to
prevent illegitimate voters from submitting votes or any voter
from double-voting. Enterprise blockchain systems accelerate
processing of transactions in business networks with known
participants. All aforementioned use cases require the transac-
tions to be properly authorized by a member of the network.
Note that permissioned does not mean centralized: the trust
is still distributed among the participants of the network, the
difference with permissionless networks is that joining the
network becomes an explicit operation. For example, instead
of a centralized certification authority for all participants, a
permissioned blockchain network uses multiple such authori-
ties, one per organization, resulting in a federated model.

Use cases that call for a transaction authorization often still
require the identity of the transaction origin to be hidden.
The most salient example is elections, where re-voting (as a
measure against coercion [1]) inherently requires voters to be
anonymous. Financial use cases where the transaction history
of a user can leak sensitive personal information through usage
patterns, are another good example. In such cases, the use of
anonymous credential systems like Identity Mixer [16] allows
participants to submit transactions while revealing only the
attributes necessary to authorize that particular transaction
(such as being a registered voter or having passed KYC
checks), and keeping all other attributes (such as name, address
or age) hidden.

Unfortunately, even the use of anonymous credentials can
be insufficient. The reason is that each organization has its own
certificate authority, and anonymity is only guaranteed relative
to that authority. In other words, the particular certificate
authority that issued a user’s credential still will be leaked
from the authorized transactions. In certain use cases even
this leakage is not acceptable, for example, the leakage of a
patient being treated in a particular hospital department. A
naı̈ve approach to tackle this is to have one global certificate
authority issuing anonymous credentials. This, however, means
that all credentials are issued by the same central entity,
essentially eliminating the federated management model that
permissioned blockchains are supposed to bring.

As first observed by Camenisch, Drijvers, and Dubovitskaya
[14], this is where delegatable credentials come in handy:
in a delegatable credential scheme, a root authority delegates
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issuance of credentials to intermediate authorities in a way
that using the credentials only reveals the root authority. In
particular, the issuance of credentials for each organization can
be delegated to a different certification authority. This helps
keeping the management largely decentralized, while at the
same time hides the particular authority that issued a given
credential.

In this paper, we design practical extensions for revocation
and auditing, and integrate the system into Hyperledger Fab-
ric [2]. Our contributions are three-fold:
• We propose mechanisms for credentials revocation

and authorizations auditing, compatible with a scheme
of [14]. The new extensions are efficient as they are
based solely on ElGamal encryption [23] and Schnorr
proofs [35]. We also provide a security definition for
delegatable anonymous credentials with revocation and
auditing in the UC framework, and prove the full scheme
secure.

• We enable auditable and private transactions via delega-
table anonymous credentials in Hyperledger Fabric. This
includes both the design of the relevant protocol parts and
their implementation.

• We present comprehensive benchmarks and evaluation of
the scheme and the proposed extensions. Namely, we de-
sign a Fabric prototype that measures the incurred compu-
tational overhead, the gains from our optimizations, and
network usage. Our prototype runs in a fully distributed
setting faithfully executing all parts of the protocol. We
open-source the implementation of the optimized core
protocol and our extensions in Go [11].

II. RELATED WORK

The most immediately related work is [14], which our paper
builds on. That paper presents an instantiation of delegatable
anonymous credentials, proves its security, and provides initial
performance numbers. It also discusses, but only on a general
and conceptual level, the use of anonymous credentials in
permissioned blockchains. Our paper extends [14] in three
main directions: (a) we design and evaluate practically-rele-
vant functionalities such as revocation and auditing; (b) we
integrate anonymous credentials in the Hyperledger Fabric
protocols, which in fact requires a different approach than
described in [14] (for example, ensuring that the creator of
the transaction is the one who generates a signature while
maintaining anonymity); (c) we provide an extensive set of
benchmarks and a production-grade implementation, which in-
cludes multiple performance optimizations ([14] implemented
just enough to run a simple performance test)..

After the publication of [14], two further papers on delegata-
ble credentials were published, namely by Blömer and Bobolz
[10] and by Crites and Lysyanskaya [20]. Both claim stronger
security properties compared to [14] by also supporting an
anonymous delegation phase; this feature is however not
required in our setting where the user and the intermediate
authority know each other. On the flip side, the scheme in [10]
supports only a fixed number of attributes that is determined

during setup, whereas we want to be able to dynamically add
attributes per intermediate authority. Furthermore, the paper
does not describe a full instantiation of the protocol, which
when instantiated, appears to be less efficient than the one
in [14]. The scheme in [20] does not support attributes, which
makes it unsuitable for our application.

Sovrin [40] also combines anonymous credentials with a
permissioned blockchain system. While we use anonymous
credentials to authorize transactions on a blockchain, the
Sovrin platform instead leverages the blockchain to produce
anonymous credentials, in the vein of previous work on decen-
tralized anonymous credentials of Garman, Green, and Miers
[24]. The two approaches thus serve two different purposes. In
the context of Sovrin, there is also an implementation of [14]
in Rust [28], which appears to be in its earlier stages.

A growing segment of the research literature on blockchain
systems aims to improve the confidentiality of transactions
using techniques such as zero-knowledge proofs (e.g. [4], [8],
[25], [34], [42]), different types of state channels (e.g. [3],
[22]) or multi-party computation (e.g. [9]). While the underly-
ing cryptographic machinery, particularly in the work on zero-
knowledge proofs, is similar to what we use here, achieving
confidentiality of transactions is orthogonal to achieving pri-
vacy of participants, and eventually privacy-friendly permis-
sioned blockchain systems will have to combine both.

III. BACKGROUND: BLOCKCHAIN AND FABRIC

The purpose of a blockchain is to implement an immutable
append-only ledger that is maintained by a network of mu-
tually distrustful parties. As a data structure, the ledger is a
chain of blocks such that each block refers to its predecessor
by including its hash, enforcing thus a total order on the
blocks. The parties continuously extend the chain by running a
consensus mechanism (e.g., proof of work or PBFT) to decide
on the respective next block. Blocks contain transactions that
have been submitted by clients for inclusion in the ledger.

Blockchains are either permissionless or permissioned.
In a permissionless blockchain such as Bitcoin [33] or
Ethereum [41], anyone can run a peer that joins the net-
work, participates in consensus and validates transactions.
Clients can submit their transactions anonymously (or rather:
pseudonymously). Trust in such networks is established via
consensus mechanisms that are based on proofs of work
(e.g., [33], [41]) or proofs of stake (e.g., [18], [31]), which
penalize misbehaving parties either by requiring them to
expend a lot of computational power in the case of proof of
work or losing their money in the case of proof of stake.

Permissioned blockchains, on the other hand, leverage iden-
tity management to counter misbehavior, foster trust and aid
governance. Most permissioned blockchain systems (e.g., [26],
[39]) build on variants of the well-studied and efficient
PBFT [17] to reach consensus. Permissioned blockchains
are particularly well-suited for applications where participant
identities are required either inherently or by regulation,
or those with high performance requirements. This includes
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enterprise applications in logistics and supply-chain manage-
ment, but also use cases in the financial and governmental
domains. Examples of prominent permissioned blockchain
platforms include Hyperledger Fabric [2] and Quorum [29].

A. Hyperledger Fabric
Fabric is a permissioned blockchain platform developed

under the umbrella of the Hyperledger project within the
Linux Foundation. Fabric is widely known for its modular and
scalable architecture. We briefly describe it, focusing on those
components relevant to transaction authorization. We refer to
the original paper [2] for a detailed description of the complete
protocol and system.

A Fabric deployment involves multiple mutually distrustful
organizations. Each organization corresponds to one trust
domain and manages one complete stack of platform com-
ponents. The components that are online during transaction
processing are orderers, peers and clients. Clients invoke
transactions and observe their results; they constitute the link
between the blockchain and the outside world. Peers execute
and validate transactions; they process the application data.
Orderers receive transactions, put them into blocks, run a
consensus algorithm to determine their order and distribute the
blocks to the peers. Orderers ignore the transaction contents,
they merely put them in order. Each organization also runs
a membership service provider (MSP), which maintains and
manages identities of all participants of that organization. This
includes issuing credentials for authentication and authoriza-
tion and their revocation when the need arises.

Fabric has a unique three-phase transaction flow called
Execute-Order-Validate. Each chaincode (i.e., smart contract)
identifies endorsers, peers that execute this chaincode. The
endorsement policy associated with the chaincode specifies
the minimum requirements for replicated execution. A sample
endorsement policy could specify that at least one peer from
each organization participating in the network must endorse.

In the Execute phase, a client invokes a chaincode by send-
ing a transaction proposal to the endorsers of that chaincode.
The endorsers execute the chaincode and sign the chaincode’s
read/write sets. After collecting enough endorsements (i.e.,
signatures on consistent read/write sets), the client constructs
a transaction that contains the proposal, the read/write sets and
the endorsements, and signs it using its MSP identity (i.e., a
credential obtained from an MSP).

In the Order phase, the client sends the signed transaction
together with some metadata to the ordering service, which
orders the transaction in a block and broadcasts the block to
the peers in the network.

In the Validate phase, the peers verify that each transaction
in the block received from the ordering service satisfies the
endorsement policy of its chaincode. The peers also update
their local state according to the write sets specified in valid
transactions.

B. Authentication, authorization and Identity Mixer in Fabric
The default Fabric MSP is based on X.509 certificates —

an identity is an X.509 certificate and its validation/revoca-

tion follows the X.509 standard. This approach is efficient,
flexible and scalable — organizations may have hierarchical
CAs which translate to hierarchical MSPs. Each transaction
(as a data structure) has two specific fields for transaction
authorization: the Creator (i.e., identity of the client invoking
the transaction) and the Signature (i.e., authorization of the
transaction). As each transaction carries the identity of its ori-
gin as a certificate and a signature, the X.509 implementation
compromises the anonymity and the privacy of clients.

To remedy this issue, Fabric uses Identity Mixer (idemix for
short), an anonymous credentials scheme based on the proto-
cols in [15]. The idemix-based MSP protocol enables clients to
sign transactions anonymously. Instead of an X.509 certificate,
an idemix MSP issues a special credential containing a set
of attributes. To sign a transaction, the holder of an idemix
identity generates a non-interactive zero-knowledge (NIZK)
proof that she received a credential from idemix that certifies
her attributes. More specifically, if Alice is a member of an
organization Org whose members are authorized to submit
certain transactions, then Alice proves that she possesses an
idemix credential from her MSP that attests that she is a
member of Org.

As discussed in the introduction, even the use of anony-
mous credentials is sometimes not sufficient from a privacy
perspective. Namely, the current implementation of idemix
leaks the identity of the MSP that issued the anonymous
credential. To mitigate this leakage, we provide a Fabric-
tailored implementation of delegatable anonymous credentials
based on the work of [14]. This implementation ensures
that the only information leaked by a transaction is the root
CA common to all network participants. Additionally, the
implementation supports efficient revocation and comes with
auditing capabilities that allow authorized parties to trace the
transactions back to their authors achieving some level of
accountability.

C. Notation

Let Zq be the set of natural numbers in [0; q) where q is
a large prime. Let G1, G2 and GT be three groups of order
q, such that there exists an efficient bilinear pairing e : G1 ×
G2 → GT . Let gi be a random generator for Gi for i ∈
{1, 2}. Let FEXP and t̂ be the final exponentiation and Miller’s
loop operations respectively, such that e = FEXP ◦ t̂. Let ←$

describe the operation of random sampling. Let sp denote the
public parameters available to all algorithms in the system.
These include the description of the bilinear groups and hash
functions. Let NIZK{w : x} denote a non-interactive zero-
knowledge proof for statement x and witness w (i.e., private
input).

IV. BACKGROUND: DELEGATABLE ANONYMOUS
CREDENTIALS

A scheme for delegatable anonymous credentials involves
the following:
Root authority A trusted entity that provides credentials to

intermediate authorities.
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Intermediate authority Each intermediate authority presents
its public key and its attributes to a parent (root or
other intermediate) authority. The latter verifies that the
intermediate authority knows the secret key and that it
holds the presented attributes, and in turn provides the
corresponding credential. An intermediate authority is al-
lowed to issue credentials to other intermediate authorities
or users.

Users A user requests credentials from the intermediate au-
thority of her organization. Prior to credential generation,
the intermediate authority checks the legitimacy of the
user’s public key and the attributes.

All participants (root, intermediate authorities and users)
start by generating their pairs of secret and public keys. A
Level-1 delegatee (usually an intermediate authority) contacts
the root to obtain a credential (i.e., signature) to bind its
public key to its attributes. Once a Level-1 delegatee gets its
credentials, it becomes a delegator itself and can thereafter
issue credentials for Level-2 delegates. This delegation process
may continue for an arbitrary number of levels, increasing the
length of the credential chain.

The holder of a credential typically uses non-interactive
zero-knowledge (NIZK) proofs to sign messages anonymously.
More precisely, signing a message m consists of proving
in zero-knowledge that (1) the signer owns the credentials;
(2) the Schnorr-like generated signature is valid for message
m; (3) inductively, all adjacent levels are legitimate (one was
delegated from the other); and (4) at the end of the induction,
the top-level public key is that of the root authority. During
the proof generation, the signer chooses which attributes to
disclose and which to keep secret. It is possible to reveal or
hide all attributes, albeit not very useful.

A. Algorithms

A delegatable anonymous credential scheme consists of the
following algorithms:
• KEYGEN(sp)→$ (csk, cpk): this algorithm is called with

the system parameters to generate a pair of secret and
public keys for the caller.
We denote the public and the secret keys of the root
authority cpk0 and csk0 respectively, and its credentials
cred0 = cpk0.

• DELEGATE(cski, credi, cpki+1,~ai+1)→$ credi+1: a level
i authority invokes this algorithm with its secret key cski
and credentials credi to produce credentials of the next
level i+ 1 that bind attributes ~ai+1 to public key cpki+1.

• PRESENT(cskL, credL, cpk0, 〈ai,j〉(i,j)∈D,m)→$Pcred:
a user calls this algorithm with her secret cskL, her
credentials credL, the root public key cpk0, attributes
〈ai,j〉(i,j)∈D she wishes to reveal and a message m to
be signed. (D is the set of indices of attributes in the
delegation chain that a user wishes to disclose.) The
algorithm returns a zero-knowledge proof that (1) shows
the validity of credL under cpk0; (2) proves that
secret key cskL matches credL and disclosed attributes
〈ai,j〉(i,j)∈D; (3) and signs m.

• VERIFY(Pcred, cpk0, 〈ai,j〉(i,j)∈D,m) → {0, 1}: this al-
gorithm verifies the correctness of proof Pcred relative to
disclosed attributes 〈ai,j〉(i,j)∈D, message m and public
key cpk0.

B. Instantiation of the scheme
Camenisch, Drijvers, and Dubovitskaya [14] introduce a

delegatable anonymous credential scheme that supports an
arbitrary number of delegation levels, thanks to a combination
of Groth signatures [27] and non-interactive zero-knowledge
proofs. Groth signatures come with two appealing features:
(1) they sign vectors of messages efficiently; and (2) they
are structure preserving. The latter property is particularly
important as it enables the generation of certificate chains by
signing public keys without leaving the algebraic representa-
tion, and proving in zero-knowledge statements about signed
public keys without necessarily knowing the underlying secret
keys.

1) Groth signatures: Groth signature [27] consists of the
following algorithms:
• SETUP(n)→$ sp: on input of integer n, output sys-

tem parameters sp = (Λ?, {y2,i}ni=1) whereby Λ? =
(q,G1,G2,Gt, g1, g2, e) and y2,i←$G2 for 1 ≤ i ≤ n.

• KEYGEN(Λ?)→$ (sk, pk): on input of group description
Λ?, output secret and public keys sk←$Zq and pk = gsk1 .

• SIGN(sk; ~m)→$σ: on input of secret key sk and vector
~m = (m1, . . . ,mn) ∈ Gn2 , do

ρ←$Z?q r := gρ1 s := (y2,1 · gsk2 )
1
ρ ti := (ysk2,i ·mi)

1
ρ

and output signature σ = (r, s, t1, . . . , tn).
• VERIFY(pk;σ; ~m) → {0, 1}: on input of public key pk,

signature σ = (r, s, t1, . . . , tn) ∈ G1 ×Gn+1
2 and vector

~m ∈ Gn2 , output the result of

e(r, s) = e(g1, y2,1) · e(pk, g2)∧
n∧
i=1

e(r, ti) = e(pk, y2,i) · e(g1,mi)

• RANDOMIZE(σ)→$σ′: on input of signature σ =
(r, s, t1, . . . , tn) ∈ G1 ×Gn+1

2 , do

ρ′←$Zq r′ := rρ
′

s′ := s
1
ρ′ t′i := t

1
ρ′

i

and output randomized signature σ′ = (r′, s′, t′1, . . . , t
′
n).

Notice that the public keys are in G1 whereas the messages are
in G2. To be able to support chaining (and thereby delegation)
using Groth signatures, we need to switch the key space and
the message space. That is, we move from one delegation level
to the next by swapping G1 and G2.

We call these schemes in the following GROTH1 and
GROTH2 where GROTHi signs messages in Gi, i ∈ {1, 2}.

2) Description: Let L denote the length of the delegation
chain, i.e., the length of the path from the root authority to
any user in the system.

Let ni for 1 ≤ i ≤ L denote the number of attributes
a(i,1), . . . , a(i,ni) authorized at the ith delegation level.

Let N1 denote max
2≤i≤L
i even

ni whereas N2 denote max
1≤i≤L
i odd

ni.
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Setup: Root authority calls

GROTH1.SETUP(N1)→$

(
Λ?, {y1,i}N1

i=1

)
GROTH2.SETUP(N2)→$

(
Λ?, {y2,i}N2

i=1

)
sets sp =

(
Λ?, {y1,i}N1

i=1, {y2,i}
N2
i=1

)
and finally announces its

credential cred0 = cpk0 whereby:

GROTH2.KEYGEN(Λ?)→$ (csk0, cpk0)

Delegation: An intermediate authority of Level-1 calls
GROTH1.KEYGEN(Λ?)→$ (csk1, cpk1) to first generate its
secret and public keys. It then requests Level-1 credentials
from the root authority by supplying cpk1, a zero-knowledge
proof that it knows the corresponding secret key csk1 and an
attribute vector ~a1.

The root authority verifies the zero-knowledge proof, and if
it is valid returns a Groth signature

GROTH2.SIGN(csk0; cpk1,~a1)→$σ1

The intermediate authority now has Level-1 credential
cred1 = (σ1,~a1, cpk1).

Similarly, a Level-2 intermediate authority
obtains a Level-2 credential by first executing
GROTH2.KEYGEN(Λ?)→$ (csk2, cpk2) and then sending
a credential request to a Level-1 authority. The credential
request consists of public key cpk2, a zero-knowledge proof
that the requestor knows the corresponding secret key csk2,
and a vector of attributes ~a2.

The Level-1 authority accordingly checks the zero-
knowledge proof, runs GROTH1.SIGN(csk1; cpk2, ~a2)→$σ2
and returns a Level-2 credential cred2 =
(σ1, ~a1, cpk1, σ2, ~a2, cpk2) to the requestor.

This process can repeat L times, the resulting Level-L
credential is credL = (〈σi, ~ai, cpki〉Li=1).

Credential presentation: To sign a message m while
disclosing attributes 〈ai,j〉(i,j)∈D, a Level-L user generates the
following NIZK proof:

Pcred←$ NIZK{(σ1,...,L, cpk1,...,L, 〈ai,j〉(i,j)/∈D, σm) :

L∧
i=2,4,...

GROTH1.VERIFY(cpki−1;σi; cpki, ai,1, . . . , ai,ni)

L∧
i=1,3,...

GROTH2.VERIFY(cpki−1;σi; cpki, ai,1, . . . , ai,ni)

∧ SCHNORR.VERIFY(cpkL;σm;m)}

In addition to proving the validity of the credential chain, the
user signs an input message m using a Schnorr-like procedure.
This allows the user to show that she knows the secret key
corresponding to the last-level credentials.

Verification: Upon receipt of proof Pcred, a verifier
checks its correctness with respect to public key cpk0 of
the root authority, message m and the disclosed attributes
〈ai,j〉(i,j)∈D.

For more details on the implementation of the zero-
knowledge proofs interested readers can refer to Algorithm 6
in Appendix B. This algorithm also includes details on how
to integrate this instantiation with Hyperledger Fabric.

Towards real-world adoption: Anonymous credentials
provide a generic solution to privacy-preserving transaction
authorization in permissioned blockchains. Nevertheless, on
their own they fall short of addressing the requirements of
revocation and auditability. For instance, the above instan-
tiation does not allow a verifier of the blockchain to tell
if the credentials used to sign the transaction are still valid
(not revoked); neither does it allow authorized parties (e.g.,
auditors) to trace the origin of the transactions posted in the
ledger.

The following section extends the protocol to address these
shortcomings.

V. AUDITABILITY AND REVOCATION

Revocation: Classical mechanisms for revocation are at
odds with anonymous credentials, whereas privacy-friendly
alternatives — such as as zero-knowledge sets [32] or ac-
cumulators combined with zero-knowledge proofs [6] —
are too computationally prohibitive to be integrated into the
blockchain.

To enable efficient and privacy-preserving revocation we
couple epoch-based whitelisting with signatures in a way that
yields efficient proofs of non-revocation. Namely, we divide
the timeline into epochs that define the validity periods of
the credentials. For each epoch, a non-revoked participant is
issued an epoch handle (a signature) that binds her public key
to the epoch. When a participant presents her credentials, she
provides along with them a proof of non-revocation that con-
sists of proving in zero-knowledge that she holds a signature
linking her public key to the current epoch. Credentials that
are valid for a certain epoch are automatically revoked the
moment the epoch expires. An epoch expires either naturally
(epoch elapses) or manually (authorized parties advance the
epoch by putting a special message on the ledger).

We define epochs in terms of blockchain height, which
ensures that transactions of revoked parties are going to be
rejected by the verifiers in the blockchain.

For ease of exposition, we assume that only the credentials
of users are revoked (i.e. Level-L credentials). We contend that
such an assumption is fair as organizations in a permissioned
blockchain will not be revoked as frequently as users, who,
on the other hand, may have their authorization to submit
transactions denied at any moment (e.g., a failure to pay
a monthly subscription, an employee leaving her company,
etc.). We note though that the proposed mechanisms can be
generalized to accommodate settings in which intermediate
authorities are also revoked.
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Let sid = (R,AU , T , L,Param, sid ′) be the session iden-
tifier.

1) Setup. On input (SETUP, 〈ni〉i) from root R.
• Output (SETUP, 〈ni〉i) to A and wait for response

(SETUP, pp′,Present,Verify, 〈Ai〉i) from A.
• Store algorithms Present and Verify and parameters
〈Ai〉i, 〈ni〉i, initialize Lde,Lp,Lau ← ∅. If AU is
corrupt set pp ← pp′, else set pp ← Param().

• Output SETUPDONE to R.
On input SETUP from AU , output (SETUP,AU) to
A, wait for response; output SETUPDONE to AU .

2) Advance. On input ADVANCE from T , set Lp ← ∅,
Lde ← {〈Pi,~a1, . . . ,~al〉 ∈ Lde : l < L}.

3) Delegate. On input (DELEGATE, ssid ,~a1, . . . ,~al,Pj)
from some party Pi, with l ≤ L and ~al ∈ Anll .
• If l = 1: check sid = (Pi,AU , T , L, sid ′), else

abort.
• If l > 1, check that 〈Pi,~a1, . . . ,~al−1〉 ∈ Lde, else

abort.
• Output (ALLOWDEL, ssid ,Pi,Pj , l) to A; wait for

input (ALLOWDEL, ssid) from A.
• Add an entry 〈Pj ,~a1, . . . ,~al〉 to Lde.
• Output (DELEGATE, ssid ,~a1, . . . ,~al,Pi) to Pj .

4) Present. On input (PRESENT,m,~a1, . . . ,~aL) from
some party Pi, with ~ai ∈ (Ai ∪ {⊥})ni for i =
1, . . . , L.
• Check that an entry 〈Pi,~a′1, . . . ,~a′L〉 exists in Lde

such that ~ai � ~a′i for i = 1, . . . , L.
• If AU honest, set p ← Present(pp,m,~a1, . . . ,~aL;
⊥), else p← Present(pp,m,~a1, . . . ,~aL;Pi). Abort
if Verify(pp, p,m,~a1, . . . ,~aL) = 0.

• Store 〈m,~a1, . . . ,~aL, p〉 in Lp and 〈p,Pi〉 in Lau.
• Output (PROOF, p) to Pi.

5) Verify. On input (VERIFY, p,m,~a1, . . . ,~aL) from Pi.
• If 〈m,~a1, . . . ,~aL, p〉 6∈ Lp, R is honest, and for i =

1, . . . , L, there is no corrupt Pj with 〈Pj ,~a′1, . . . ,~a′i〉
∈ Lde and ~aj � ~a′j for j = 1, . . . , i, set f ← 0.

• Else, output (VERIFY, p) to A; expect response
(VERIFY,P). Set f ← Verify(pp, p,m,~a1, . . . ,~aL).
If P corrupt ∧ f then add 〈p,P〉 to Lau.

• Output (VERIFIED, f) to Pi.
6) Audit. On input (AUDIT, p) from AU , if 〈p,P〉 6∈ Lau,

output (AUDIT, p) to A. Upon obtaining (AUDIT,P)
from A, where P is corrupted, store 〈p,P〉 in Lau. If
now there is a valid record 〈p,P〉 in Lau, then output
(RESULT,P) to AU . Else, output ⊥ to AU .

Fig. 1: Extended credentials functionality Fdac+.

Audit: To enable auditing, the transaction author embeds
her identifier (the public key) encrypted under the auditor’s
public key into the transaction using a semantically secure
encryption. For this solution to be viable, it must ensure that
the user (1) encrypts her own public key and (2) uses the
public key of the authorized auditor. Zero-knowledge proofs
such as [35] coupled with ElGamal encryption [23] allow us
to address these challenges relatively efficiently.

For the sake of simplicity, we only focus on settings where
just a single auditor is present for all the users in the system.
The proposed solution could be easily enhanced to support
scenarios with multiple auditors. Namely, users will have their
auditor’s public key as an attribute and the proof of correct
encryption will show that the correct public key is being used.

A. Security definition

We define the security of our extended scheme based on
the functionality Fdac from [14]. We model revocation by
introducing a message ADVANCE that can be input by a
special party T , and that effects in all last-level delegations as
well as generated proofs becoming invalid. This input models
an epoch switch. We model audit by providing an input AUDIT
to an auditor AU , which upon input of a credential proof p
outputs the party P that presented p. Properly modeling audit
also requires to account for the case where AU is corrupted.
This is achieved by allowing A to input the parameters pp′ so

that Present can include the identity of the origin of each proof
p, which is necessary since a corrupt auditor will be able to
decrypt this information anyway. The complete functionality
Fdac+ is specified in Fig. 1.

B. Revocation

We describe two alternative solutions that differ in their
generality. The first one is straightforward but requires revo-
cations being handled by the same authorities that issue user
credentials. The second is more complex but allows revoca-
tions and credentials to be handled by different authorities. See
Section VIII for performance analysis of the latter approach.

Epoch as an attribute: We implement revocation using
delegatable credentials in such a way that users in the last
level of delegation have epoch identifiers as attributes. A
user thus needs to request new delegatable credentials from
her issuer every time an epoch expires to be able to submit
transactions. The proof of non-revocation in this case uses the
proof generation depicted in Algorithm 6 such that one of
the disclosed attributes is the identifier of the current epoch.
Note that in this case only the last-level credentials are being
regenerated in each epoch.

Explicit proof of non-revocation: The solution above re-
quires no additional cryptographic implementation, however,
it suffers from the limitation that the credential issuer must

6



always be the same as the revocation authority. To accom-
modate settings where credential issuers are different from
revocation authorities, we decouple the credentials for user
attributes from epoch credentials. To obtain authorization for
the current epoch, a user contacts the revocation authority with
a proof of her public key possession. The revocation authority
in turn responds with a Groth signature of the user’s public
key and the epoch identifier. When the user wishes to submit a
transaction, she generates a proof of non-revocation that shows
the knowledge of an epoch handle and the associated secret
key. Verifiers in the blockchain check the non-revocation proof
and if valid, verify the user’s signature on the transaction
content. In more formal terms, we augment the protocol in
Section IV-B2 with the following.

Let g denote a generator of the bilinear group in which the
public keys of users (i.e., public keys associated with Level-L
credentials) reside, and let f denote a generator of the other
bilinear group.

Revocation setup: The revocation authority computes
its pair of Groth secret and public keys (rsk, rpk =
f rsk)←$ GROTH.KEYGEN(Λ?) and publishes rpk.

Generation of non-revocation credentials: Upon receipt
of a credential request for public key cpk and current epoch,
revocation authority verifies that the requestor knows the secret
key matching cpk, and computes

ε := gHASH(epoch)

σ←$ GROTH.SIGN(rsk; ε, cpk)

and returns non-revocation credentials (σ, cpk).
Proof generation: A user signs a message m and proves

that she is not revoked during the current epoch by outputting
a tuple (m, 〈ai,j〉(i,j)∈D,P) such that:

P←$ NIZK{(σ1,...,L, cpk1,...,L, 〈ai,j〉(i,j)/∈D, σm, σ) :

L∧
i=2,4,...

GROTH1.VERIFY(cpki−1;σi; cpki, ai,1, . . . , ai,ni)

L∧
i=1,3,...

GROTH2.VERIFY(cpki−1;σi; cpki, ai,1, . . . , ai,ni)

∧ SCHNORR.VERIFY(cpkL;σm;m)

∧ GROTH.VERIFY(rpk;σ; ε, cpkL)}

C. Audit

Our auditable anonymous delegatable credentials extension
adds an Audit setup step and enhances the credential presen-
tation with verifiable encryption.

Audit setup: The authorized auditor computes a pair of
ElGamal secret and public keys (ask, apk = gask) and then
announces apk. We assume there are mechanisms in place to
verify that the auditor is legitimate and knows the secret key
ask.

Proof Generation: A user signs a message m in an
auditable manner and outputs a tuple (m, 〈ai,j〉(i,j)∈D, enc,P)
such that:

P←$ NIZK{(σ1,...,L, cpk1,...,L, 〈ai,j〉(i,j)/∈D, σm, σ, ρ) :

L∧
i=2,4,...

GROTH1.VERIFY(cpki−1;σi; cpki, ai,1, . . . , ai,ni)

L∧
i=1,3,...

GROTH2.VERIFY(cpki−1;σi; cpki, ai,1, . . . , ai,ni)

∧ SCHNORR.VERIFY(cpkL;σm;m)

∧ GROTH.VERIFY(rpk;σ; ε, cpkL)

∧ enc = (cpkL · apk
ρ, gρ)}

If the auditor decides to learn the identity of the origin of
a message m, all she needs to do is to decrypt ciphertext enc.
This process is guaranteed to succeed and correctly yield the
right public key thanks to the soundness of P.

Details on the implementation of this extension are provided
in Algorithms 3 to 5 in Appendix B. Algorithm 2 puts all the
components together and includes elements of the integration
with Hyperledger Fabric.

D. Security statement

In Appendix A, we prove that our extended protocol realizes
the functionality specified in Fig. 1.

Theorem 1. Delegatable credentials protocol Πdac+ securely
realizes Fdac+ in the (Fsmt,Fca,Fcrs,Fclock)-hybrid model,
provided that
• SIGNNYM (Algorithm 3) is a strongly unforgeable sig-

nature,
• the auditing encryption is semantically secure,
• NIZK is a simulation-sound extractable non-interactive

zero-knowledge proof.

Our instantiated protocol is covered by the security state-
ment since both Schnorr (used in binding the pseudonym)
and Groth signatures are existentially unforgeable, ElGamal
encryption is semantically secure, and Schnorr proofs are
simulation-sound extractable.

The full proof of Theorem 1 could be found in Appendix A.

VI. OPTIMIZED IMPLEMENTATION

While implementing our extended protocol, we discovered
several enhancements and optimizations over the scheme
in [14]. This section presents our improvements of the base
scheme.

A. Corrected and refactored pseudocode

Following the pseudocode [14, Figures 4 and 5] precisely
we have found out that the verification always fails. We were
able to spot the mistakes and provide a corrected version in
Algorithm 6. Additionally, we have refactored the pseudocode
by adjusting g1, g2 and y values on each loop iteration,
simplifying the code and reducing its size in half.
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B. Parallelization

We have noticed that the heaviest operation in the code is
the computation of commitments. Moreover, we have found
that commitments can be computed independently of one
another, and therefore can be easily parallelized. Instead of
computing the commitments eagerly, our program schedules
the computation and puts it in a queue. Before hashing the
commitments, the program waits for the last computation to
finish, signaling that the commitment set is computed. We find
this task granularity optimal in this scenario as the computation
takes long enough to neglect a cost of spawning an extra thread
and is small enough that the system can uniformly disperse
its load among available resources.

C. Miller’s loop and final exponentiation

Camenisch, Drijvers, and Dubovitskaya [14] mention that
when computing a product of pairings it makes sense to
compute Miller’s loop first on some pairs, multiply them and
only then apply final exponentiation. However, the authors
used this tactic only on a fraction of computations. We have
discovered a way to extend this optimization and apply it
globally.

The idea is to convert every pairing product to a set of
Miller’s loops and apply final exponentiation once per such
a product. The trick is to use bilinearity of Miller’s loop to
put exponents inside the pairings. For example, the following
computations are equivalent:∏
i

e (ai, bi)
ci = FEXP

(∏
i

t̂(acii , bi)

)
= FEXP

(∏
i

t̂(ai, b
ci
i )

)
Since exponentiations are cheaper in G1 than in G2 (specif-
ically, when using AMCL library [36]), we decided to expo-
nentiate elements in G1. See Algorithm 1.

Algorithm 1 e-product optimization
Require: ai ∈ G1, bi ∈ G2, ci ∈ Zq ∪ ⊥ for L = 1, . . . , n
Ensure: EPRODUCT(〈ai, bi, ci〉ni=1) =

∏n
i=1 e(ai, bi)

ci

1: procedure EPRODUCT(〈ai, bi, ci〉ni=1)
2: r := 1T ∈ GT . an identity element
3: for i = (1, . . . , n) do
4: if ci 6= ⊥ then
5: ai := acii
6: for i = (1, 3, . . . , n) do
7: if ai+1 6= ⊥ then
8: . t̂2 is a more efficient version of t̂ · t̂
9: r := r · t̂2 (ai, bi, ai+1, bi+1)

10: else
11: r := r · t̂ (ai, bi)

12: return FEXP (r)

VII. INTEGRATION WITH HYPERLEDGER FABRIC

This section presents our protocol and explains how the
building blocks defined earlier work together within Fabric.

We assume that all parties have access to system parameters
sp and public key cpk0 of the root authority, and that they
have generated their pairs of secret and public keys. The keys
are always generated as sk←$Zq and pk := gsk where g
is a group generator of either G1 or G2 depending on the
delegation level.

A. Including pseudonyms in proof

In Fabric, a transaction has two special fields that are used
in tandem to establish its authenticity. A Creator field that
contains the identity of the transaction author, and a Signature
field that holds a signature of the rest of the transaction by its
author. Fabric specifications require that Creator and Signature
be validated individually. Integrating delegatable credentials
directly introduces two security flaws: namely, if Creator is
a NIZK of the credential validity and Signature is a regular
signature with the author’s secret key, then (1) there is no
guarantee that the keys used to generate the NIZK and the
signature are the same, and (2) the regular signature itself
would leak the identity of the signer by going through all
users’ public keys and testing whether the signature verifies.

To solve the above problems, we generate a Pedersen
commitment (called pseudonym) to the secret key and place
it in both fields. This pseudonym ensures that the same secret
key is used to produce Creator and Signature fields. Notably,
Creator contains a modified NIZK proof that shows that the
prover knows the secret key used to construct the pseudonym
and that it is the same secret key underlying the credentials.
Signature, on the other hand, is a Schnorr-like proof of
knowledge that leverages the content of the transaction to
compute the challenge and shows knowledge of the secret key
committed in the pseudonym.

The verifier first checks whether Creator and Signature
include the same pseudonym. If so, it verifies the validity of
the content of those fields independently; otherwise it rejects.
See Algorithm 3 for more details.

B. Submitting transactions

A user authorizes the execution of a chaincode by providing
a NIZK proof and a linked signature on the proposal, as
described in Section VII-A. During this process, the user can
decide to selectively disclose attributes, which are made avail-
able to the chaincode so access control can be implemented
as needed by the application. The protocol has the following
global stages (see Algorithm 2).

At the setup stage (line 2), the parties generate their secret
and public keys.

The delegation stage starts by a credential request from the
delegatee to the delegator where the former proves that she
knows the secret key corresponding to her public key, using a
classical non-interactive Schnorr proof (see Algorithm 3). To
ensure the freshness of the proof the delegator (i.e., verifier)
provides a nonce that would be used to compute the challenge
in the proof. If the provided proof is valid, then the delegator
signs, using Groth, the public key and the attributes of the del-
egatee. We note that it is up to the delegator to determine the
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Algorithm 2 Πdac+: delegation, revocation, auditing and transaction submission protocols
1 : Level-i CA Level-(i+ 1) CA

. . . . . . . . . . . . . . . . . . . . . Repeated for L rounds of delegation (from the Root CA to Intermediate CAs to the User) . . . . . . . . . . . . . . . . . . . . .

2 : cski ←$Zq, cpki := gcski cski+1 ←$Zq, cpki+1 := f cski+1

3 : nonce←$ {0, 1}λ nonce Ppk ←$ PROVEPK(cski+1, cpki+1, nonce)

4 : VERIFYPK(Ppk, cpki+1, nonce)
Ppk, cpki+1

5 : σi+1 ←$ GROTH.SIGN(cski; cpki+1,~ai+1) σi+1 credi+1 := (σi+1,~ai+1, cpki+1)

6 : Revocation authority User

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On each epoch, user requests a non-revocation handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 : rsk←$Zq, rpk := grsk csk←$Zq, cpk := gcsk

8 : nonce←$ {0, 1}λ nonce Ppk ←$ PROVEPK(csk, cpk, nonce)

9 : VERIFYPK(Ppk, cpk, nonce) Ppk, cpk

10 : σ←$ NRSIGN(rsk; cpk, epoch) σ σ, epoch

11 : Verifier User
12 : (from the delegation stage) cred := (〈σj , ~aj , cpkj〉

L
j=1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . User submits a transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 : enc, ρ := AUDITENC(apk, cpk)

14 : sknym, pknym ←$ MAKENYM(csk)

15 : Prev ←$ NRPROVE(σ, csk, sknym, epoch)

16 : Paudit ←$ AUDITPROVE(enc, ρ, cpk, csk, pknym, sknym)

17 : (no need to sign a message) Pcred ←$ CREDPROVE(cred, D, sknym, csk,⊥)
18 : σnym ←$ SIGNNYM(pknym, sknym, csk, tx)

19 : (Pcred,Prev,Paudit, enc, tx, pknym) := m m,σnym m := (Pcred,Prev,Paudit, enc, tx, pknym)

20 : VERIFYNYM(pknym, tx, σnym)

21 : NRVERIFY(Prev, pknym, epoch)

22 : AUDITVERIFY(Paudit, enc, pknym)

23 : CREDVERIFY(Pcred, D, pknym,⊥)

delegatee’s valid attributes. This process of credential issuance
can be repeated an arbitrary number of times increasing the
length of the credential chain. In more concrete terms, the first
level of the delegation corresponds to the root authority issuing
credentials to intermediate authorities that in turn delegate the
credentials further down the hierarchy (lines 2–5). On the
last level of the credential chain, we find users who submit
transactions to Fabric.

The transaction stage (lines 13–23) has the user generate
randomized proofs and signatures to authenticate the content
of her transactions anonymously. Namely, the user generates
a pseudonym (i.e., Pedersen commitment) to commit to her
secret key (see Section VII-A). Then she generates a proof in
which she discloses her attributes as needed and shows the
following: (1) the user knows valid credentials, and (2) the

pseudonym commits to the secret key matching the credentials.
As part of the transaction the user also includes the proof of
possessing a non-revocation handle (line 15) and an encryption
of her public key under auditor’s key, along with the proof of
its correctness (lines 13 and 16). If the user does not have a
non-revocation handle for the current epoch, she requests it
from the authority (lines 8–10). Finally, she signs the content
of the transaction with the secret key in the pseudonym
(lines 14 and 18).

Verifiers consequently validate the transaction by checking
that the proofs and signatures refer to the same pseudonym
and that they are valid with respect to the disclosed attributes
(lines 20 and 23).
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VIII. EXPERIMENTAL EVALUATION

We provide a generic implementation of improved DAC
scheme and our extensions. The scheme produces valid cre-
dentials and proofs for any number of levels and attributes for
both groups: G1 and G2, for odd and even levels. The project
is tested with over 470 tests and they cover 100 % of the code.
We note that this is a significant improvement over the original
code, which was only a prototype computing a single hard-
coded credential. We also note that the original code is not
open-sourced.

All benchmarks (unless otherwise specified) were run on
c2-standard-60 GCE VM running Ubuntu 18.04 (60
vCPUs, Intel Cascade Lake 3.1 GHz, 240 GB RAM). We have
used Apache Milagro Cryptographic Library (AMCL) [36]
with a 254-bit Barreto-Naehrig curve [7] for low-level opera-
tions such as pairings, exponentiations and PRG operations.

We design our experiments to answer these questions:
Question-1 What is the optimizations’ performance benefit?
Question-2 How does the improved core DAC scheme scale

with the number of levels and attributes?
Question-3 What overhead do our extensions impose?
Question-4 How does the system compare to the old non-

delegatable idemix?
Question-5 How practical is maintaining a single and pos-

sibly distributed revocation authority that we
designed?

Question-6 What is the efficacy of the entire blockchain stack
using our protocol? How efficiently does it use
the network? How does it scale with the number
of users, peers and endorsers?

Comparing to [14].: We have run comprehensive bench-
marks of every operation of the scheme and our extensions
using multiple parameter values. We stress that our evaluation
results differ from the ones in [14]. First, the implementations
are written in different languages and run on different pro-
cessors. These differences are significant when benchmarking
cryptographic primitives, which mostly involve bit manipu-
lations. Second, we have obtained the original code of [14]
and we have noticed distinctions in benchmark methodologies.
The code in [14] pre-computes some values (pairings) during
the signature phase, and therefore this time is not included in
the proof generation and verification stages. Our benchmarks
involve no pre-computations to produce most fair results.
Third, our scheme includes pseudonym commitments, which
add noticeable overhead for small values of L and n. Overall,
given that our code is production-ready, generic and open-
sourced, we want our benchmarks to be treated independently
of the previous work.

In the following, L stands for the number of delegation
levels, n stands for the number of attributes per level, which
we set to be the same for every level for simplicity. All
benchmarked operations were run 100 times. Note that the
most sensitive overhead is due to verification, since it is the
operation that will be run by the entire Fabric network. In
Fabric, having L = 2 and n = 2 covers most use-cases.

We noticed that the overhead value is very sensible, thus for
fairness we present the results with the highest overhead.

Question-1: optimizations: First of all, we wanted to
demonstrate the improvement due to our optimizations. We
have run the benchmarks with all combinations of e-product
and parallelization optimizations (see Table I). Results show
that for the most commonly-used parameter values the im-
provement is almost fivefold.

e-product Parallelization CREDPROVE CREDVERIFY
Big Small Big Small

disabled disabled 2 873 843 1 523 948
enabled disabled 1 312 341 853 372
disabled enabled 1 480 357 890 352
enabled enabled 890 191 391 197

Improvement (≈ times) 3.2 4.4 3.9 4.8

TABLE I: Optimizations benchmark for L = 2 and n = 2
(small) and L = 5 and n = 3 (big). The values are in
milliseconds.

Question-2: different parameters: With optimizations en-
abled we have run the operations for multiple combinations of
levels and attributes. In Table II we put the proof generation
and verification times along with the generated proof size for
L ∈ {1, 2, 3, 5, 10} and n ∈ [0; 4]. In all cases all attributes
are hidden — the overhead difference when all attributes are
revealed is minimal. We can confirm that the overhead and
proof size grow linearly with L and n.

L
n

0 1 2 3 4

1
41ms 51ms 63ms 72ms 82ms
89ms 110ms 116ms 153ms 173ms
398B 534B 670B 806B 942B

2
94ms 138ms 192ms 255ms 315ms
124ms 158ms 198ms 262ms 310ms
801B 1.2 kB 1.6 kB 2.0 kB 2.4 kB

3
173ms 273ms 367ms 516ms 616ms
188ms 249ms 329ms 387ms 427ms
1.2 kB 1.7 kB 2.3 kB 2.8 kB 3.3 kB

5
333ms 542ms 661ms 891ms 1 146ms
276ms 342ms 391ms 500ms 648ms
2.0 kB 2.9 kB 3.9 kB 4.8 kB 5.7 kB

10
822ms 1 177ms 1 652ms 2 115ms 2 666ms
457ms 638ms 860ms 1 053ms 1 234ms
4.0 kB 6kB 8kB 10kB 12kB

TABLE II: Parameters benchmark. In each cell the top value
is a proof generation overhead, the middle value is a proof
verification overhead and the bottom value is the proof size.

Question-3: extensions: Table III depicts the performance
results for the helper methods. Each method was run in both
G1 and G2 (judged by the number of operations in a group).
Note that operations in G2 are considerably slower in AMCL
and that revocation routines are relatively slower due to the
use of pairing in proofs. Our future work is to apply the
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optimizations we used with delegatable credentials scheme to
this procedure as well.

Also note that adding pseudonyms, enabling auditing and
proving possession of the secret key incur little overhead
relative to the cost of credential proof generation.

Procedure Time Procedure Time
G1 G2 G1 G2

GROTH.KEYGEN 1.6 4.7 GROTH.SIGN 16 41
GROTH.RANDOMIZE 11 23 GROTH.VERIFY 53 62
SCHNORR.SIGN 1.6 4.8 SCHNORR.VERIFY 2 9.6

AUDITENCRYPT 3 9.4 NRSIGN 14 30
AUDITPROVE 5.8 24 NRPROVE 66 88
AUDITVERIFY 9.2 39 NRVERIFY 127 149

MAKENYM 2.1 9.4 PROVEPK 3.1 9.4
SIGNNYM 2.2 9.9 VERIFYPK 2 9.5
VERIFYNYM 3.5 14 KEYGEN 1.5 4.2

TABLE III: Running time of extensions in milliseconds.

Question-4: against older idemix: We have run the bench-
marks against the non-delegatable idemix implementation cur-
rently in Fabric and against the Fabric MSP with no anonymity
(see Section III-B). The default (non-idemix) Fabric MSP
simply uses X.509 certificates and ECDSA algorithms [38] for
signatures and verifications. The current idemix implementa-
tion in Fabric [15] uses BBS+ signatures [5]. A user in this
construction essentially proves the knowledge of a signature
on her attributes. This mechanism however, does not support
delegation.

We have run a simple workload — generating secrets,
signing and verifying identities — for all three mechanisms.
For the default MSP we have run ECDSA algorithms available
in Go crypto module using the P-384 curve — the most
secure option available in Fabric. For the Fabric idemix MSP
we have run the entire workload against the actual Go code
in the official repository [19] using five attributes. Lastly, we
have run the workload with our solution using a single level
and five attributes.

Experimental results show the relative costs of using more
privacy-preserving solutions. Default MSP takes 21 ms, idemix
MSP in Fabric takes 108 ms and our solution takes 210 ms.
Reasonably, the more anonymity a solution offers, the more
expensive it is. We believe that this overhead is acceptable,
given that privacy-preserving MSP operations are tailored for
applications that see value in trading gains in performance for
gains in privacy.

Question-5: revocation authority overhead

The revocation functionality requires a single (possibly
distributed) revocation authority. A legitimate concern is that
the revocation authority could become a bottleneck in a real-
world deployment, as at the beginning of each epoch users
need to update their revocation credentials to be able to submit
transactions. We contend that in most cases this will not be an
issue for the following reasons. First, since the users require
the handle to submit transactions, we can safely assume that
they will only request it when they are about to submit a
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transaction. Therefore, the load is more likely to be distributed,
especially for long epochs. For short epochs a user may
not even need the handle if she does not wish to submit a
transaction. Second, the overhead of issuing the non-revocation
handle is 15 ms to 30 ms, which is much smaller than the time
it takes to process an anonymous transaction. This means that
a faster revocation authority does not necessarily result in any
improvement on the perceived performance of the network
(i.e., transaction latency and throughput).

To validate our intuition, we have designed a minimalistic
server in Go that uses our library to process requests for non-
revocation handles. We observed a stable 200 requests per
second throughput on our testing machine. We note that the
real deployment will likely use a replicated service, which will
scale horizontally.

Question-6: blockchain prototype

We have built a standalone Hyperledger Fabric prototype
to empirically assess the computation and network overhead
of our implementation (open-sourced [12]). We note that
although our prototype faithfully mimics the processing and
network components of Fabric, it is still an idealized version
of the latter. Thus, the numbers we present here are a lower
bound of the expected integration cost.

Our prototype integrates the cryptographic protocols of
credentials delegation and transaction processing (recall Algo-
rithm 2). More precisely, in the setup phase, root, revocation
and auditing authorities, intermediate organizations and users
generate their secret and public key pairs. The root delegates
the credentials to organizations, which delegate them further
to their respective users.
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In the transaction phase, all users submit a configured num-
ber of transactions. Transactions are submitted sequentially for
a single user but in parallel among all users. Users wait a con-
figurable amount of time, sampled from Poisson distribution,
before submitting the next transaction. Transaction processing
requires executing the chaincode and computing read/write
sets, which involves running a Docker container. We model
this stage by waiting 50 ms — average time it takes to execute
the simplest chaincode. In the auditing phase, an auditor goes
over all transactions decrypting the user public keys.

When making design decisions, we chose very conservative
options to measure the worst-case overhead. For example, we
wait for all peers to validate a transaction, not for 50 % + 1.
We also have organizations and users associated with two
attributes each to closely emulate typical Fabric deployment.
The prototype has two modes of operation — local and
distributed.

Local simulator.: In the local mode the blockchain is run
on a single powerful machine (see Section VIII specs) with
Fabric components modeled as threads running event loops.
The purpose of this setting is very fine-grained control over
the simulated network and detailed reporting.

Users, peers and authorities faithfully execute cryptographic
protocols and the transfer of objects is carefully recorded. For
each transaction, prototype reports the processing time — total
and broken up into stages. It also reports all network traffic
for all transferred objects in a run. Network log is further
processed with scripts to produce statistics and plots.

The simulated network is composed of a global switch to
which every party is connected, and a local switch per each
party. The bandwidth of all switches is configurable — lower
value for local and higher value for global. Once a party
schedules an object transfer, such as user sending a transaction
proposal to an endorser, the sender waits the time it takes to
transfer the object through the pipeline. A pipeline consists of
local switches of sender and receiver and a global switch. If
any switch is occupied the sender waits in a queue.

Distributed setting: In the distributed mode the compo-
nents (authorities, users and peers) are running each on its own
VM and they transfer the objects over the real network. The
purpose of this setup is running the entire protocol presented
in this work in the most real-world setting. Experiments in
this mode were run on n1-standard GCE VMs running
Ubuntu 18.04 (Intel Broadwell 2.2 GHz).

To mimic realistic deployment we have used three geo-
graphically different regions for different components. Root
(2 vCPUs) and revocation (4 vCPUs) authorities are deployed
in Zone 1 (us-central-1). Sets of peers (16 vCPUs),
users (8 vCPUs) and organization (Level-1) authorities (2
vCPUs) are deployed in Zone 2 (us-east1-b) and Zone
3 (us-east4-c). Ping times between zones are 12.5 ms,
24.9 ms and 33.2 ms. VMs talk to each other through remote
procedure calls (RPC) asynchronously. We have depicted the
setup in Fig. 2.

Results: We have run a number of experiments using local
setting to study network behavior and distributed setting to
study the effects of varying the number of peers, users,
required endorsements and enabling / disabling revocation and
auditing. Our default setting is 2 organizations, 5 users, 3
peers, 2 required endorsements and revocation with auditing
enabled (see Fig. 2). In all experiments the users submit 100
transactions each (while waiting between transactions in the
local setting).

Local setting: In local setting, we fine-tuned the band-
width of our virtual network switches. Predictably, when the
bandwidth is set to a higher value, the network imposes
no overhead, whereas when the bandwidth is low, network
becomes the bottleneck. The experiment has shown that the
largest and most frequent object traveling in the network is
a 4.9 KiB transaction. By tuning the bandwidth parameters
in a binary search fashion, we found that approximately at
40 KiB/s locally and 100 KiB/s globally the network over-
head stops affecting the transaction processing time. Typical
Fabric deployment uses at least a 1 GiB/s network, which

12



N
on

e
A

ud
iti

ng
R

ev
oc

at
io

n
B

ot
h 1 2 3 1 2 3 4 5 1 2 3

N
on

e
B

ot
h

Extensions Endorsements Users Peers Minimal

0

200

400

600

800

1 000

1 200

1 400

1 600

Fig. 4: Distributed experiments results. Extensions category
runs default setting with some, all or no extensions enabled.
Endorsements, users and peers categories vary the number of
endorsements, users and peers respectively. Minimal category
runs a single user, peer and endorsement with both or no
extensions enabled. Both and None refer to enabling and
disabling both revocation and auditing. Average transaction
overhead is reported in milliseconds.

means that the increased object sizes of our idemix will have
no effect on network performance.

We then have studied the effect of revocation on the network
overhead. On top of benchmarking the revocation server in
isolation (see Section VIII), we have run an experiment with
frequent revocations. We have set the epoch length to 5
seconds and observed no significant change in the experiment
results. Non-revocation request is just a small stage in a
transaction submission, and the transaction throughput is much
smaller than that of revocation processing.

To visualize network usage, we have plotted the network
log in Fig. 3. The plot is generated from 20 ms intervals, each
bar and tick representing data from a single interval. Bars
on the bottom show the objects traveling in the network in
a given interval. Lines on the top show the latency. Ideal
latency (green) is the time it takes to transfer the object
over an unsaturated network, i.e, object size over bandwidth.
Real latency (red) shows how much time it actually took for
the slowest object in the interval. Among other things, the
figure shows that despite short epochs (5 seconds), revocation
requests do not result in any spikes in latency.

Distributed setting: In the distributed setting, we started
with a hypothetical best-case scenario: a single user and a
single peer. The time it takes to generate, validate and commit
a single transaction is below a second on average (855 ms).
Disabling auditing and revocation saves additional 256 ms,
see Fig. 4 minimal category. Out of this, 164 ms is spent
on endorsement, whereas validation takes 432 ms. The rest is
taken by user’s actions: credential proof generation, signing,
collecting and verifying endorsements, etc.

Auditing takes 4 574 ms, which corresponds to the decryp-
tion of the ElGamal ciphertexts (500 decryptions, about 9 ms
per decryption).

We have run the default experiment (5 users, 3 peers, 2
endorsements, 20 seconds epochs and both extensions enabled)
and have studied the effects of changing the settings on
the transaction processing overhead. The default experiment

involves 500 transactions and takes 1 555 ms per transaction.
The first group of experiments examines the overheads of ex-
tensions. Disabling revocation saves 15 %, disabling auditing
saves another 8 %, see Fig. 4 extensions category.

We have found that the number of required endorsements
does not significantly affect the overhead, see Fig. 4 en-
dorsements category. This is expected since endorsements are
processed in parallel and take a small fraction of transaction
processing time.

The number of users influences the overhead substantially,
see Fig. 4 users category. Each new user increases the number
of transactions validated by a single peer at a time. Since
each peer eventually validates all transactions, the number of
users is linearly correlated with the overhead regardless of the
number of peers. Figure 4 indeed depicts linear relationship
with a difference between 3 and 4 users attributed to different
ping times between zones (recall Fig. 2).

Finally, we have found that the number of peers is also
positively correlated with the overhead, see Fig. 4 peers
category. This is also expected since a transaction is completed
when the last peer validates it, and each new peer increases
the variance in validation overhead. The difference between 2
and 3 peers is also attributed to inter-zone ping time.

IX. CONCLUSION

The possibility to perform transactions privately and anony-
mously is crucial to the use of blockchain technology in
many financial and governmental use cases, as well as all
use cases that involve personal data. Anonymous transaction
authorization, as achieved through our implementation and
extensions, is a key enabler for blockchain technology in
privacy-sensitive use cases.

The enhanced privacy guarantees incur a price in terms of
computational complexity in the transaction generation and
achievable throughput. For this reason, we identified points
for optimization to make the performance of delegatable
credentials closer to practical.

The code of the cryptographic library implementing the
anonymous credential scheme is already available as open
source under MIT license. The integration into Fabric is not
yet publicly available. Our goal is to make it a part of the
standard Fabric distribution, and we are working with the
Fabric community toward this goal.

Future work

While our work is an important step toward improving
privacy in permissioned blockchains, both security and per-
formance of our current solution can be further improved. In
our current implementation, the root certificate authority is
still a central party. Although it does not play an active role
in the online protocols and does not issue any certificates to
users, we plan to implement a threshold protocol in which
the organizations participating in the blockchain system jointly
produce the first-level signatures, further distributing the trust
(e.g., [37]).
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In Fabric, every transaction is executed (endorsed) only by
a subset of the peers, which allows parallel execution and
addresses potential non-determinism. A flexible endorsement
policy specifies which peers, or how many of them, need to
vouch for the correct execution of a given smart contract.
Currently, the endorsement policy reveals the identity of the
involved peers. A future line of work would be to remove this
leakage. The idea is to equip the peers with idemix credentials
and use commitments to obfuscate the endorsement policy.
Consequently, after collecting all the required endorsements,
the client can prove in zero-knowledge the knowledge of valid
signatures that satisfy the obfuscated endorsement policy.
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APPENDIX A
SECURITY ANALYSIS

Our theorem proving the security of the extended protocol
builds directly on the proof of the core protocol from [14]
and extended by [21]. Our extensions that cover revocation
and auditability are as follows. (1) We construct the scheme
as a combination of standard signatures and NIZK, instead
of sibling signatures and NIZK as used in [14], [21]. This is
possible as we restrict ourselves to the case where the length
of each delegation chain is fixed. (2) We need the NIZK to be
non-malleable, as otherwise Fdac+ cannot identify the correct
credential owner during an auditing query. This, however, is
already implied by simulation-sound extractability. (3) We
use a clock functionality [30] to model the advancement of
epochs for the revocation scheme. We skip the parts of the
description of the protocol Πdac+ and the proof that are
identical to [14], and only discuss the differences that appear
due to the revocation and auditing features.

Setup: In addition to root authorityR, auditorAU creates
a Diffie-Hellman key pair and registers the public key. The
auditor also registers a proof-of-knowledge of the private key
like root authority R, at functionality Fca. We use the same
scheme for AU as [14] uses for R, so that we also achieve
online extractability.

15

https://github.com/lovesh/signature-schemes/tree/delegatable/delg_cred_cdd
https://github.com/lovesh/signature-schemes/tree/delegatable/delg_cred_cdd
https://www.goquorum.com/
https://www.goquorum.com/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/MIRACL/amcl
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://sovrin.org/
https://sovrin.org/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf


Let sid = (R,AU , T , L,Param, sid ′) be the session iden-
tifier.

1) Setup. On input (SETUP, 〈ni〉i) from root R.
• Output (SETUP, 〈ni〉i) to A and wait for response

(SETUP, pp′,Present,Verify, 〈Ai〉i) from A.
• Store algorithms Present and Verify and parameters
〈Ai〉i, 〈ni〉i, initialize Lde,Lp,Lau ← ∅. If AU is
corrupt set pp ← pp′, else set pp ← Param().

• Output SETUPDONE to R.
On input SETUP from AU , output (SETUP,AU) to
A, wait for response; output SETUPDONE to AU .

2) Advance. On input ADVANCE from T , set Lp ← ∅,
Lde ← {〈Pi,~a1, . . . ,~al〉 ∈ Lde : l < L}.

3) Delegate. On input (DELEGATE, ssid ,~a1, . . . ,~al,Pj)
from some party Pi, with l ≤ L and ~al ∈ Anll .
• If l = 1: check sid = (Pi,AU , T , L, sid ′), else

abort.
• If l > 1, check that 〈Pi,~a1, . . . ,~al−1〉 ∈ Lde, else

abort.
• Output (ALLOWDEL, ssid ,Pi,Pj , l) to A; wait for

input (ALLOWDEL, ssid) from A.
• Add an entry 〈Pj ,~a1, . . . ,~al〉 to Lde.
• Output (DELEGATE, ssid ,~a1, . . . ,~al,Pi) to Pj .

4) Present. On input (PRESENT,m,~a1, . . . ,~aL) from
some party Pi, with ~ai ∈ (Ai ∪ {⊥})ni for i =
1, . . . , L.
• Check that an entry 〈Pi,~a′1, . . . ,~a′L〉 exists in Lde

such that ~ai � ~a′i for i = 1, . . . , L.
• If AU honest, set p ← Present(pp,m,~a1, . . . ,~aL;
⊥), else p← Present(pp,m,~a1, . . . ,~aL;Pi). Abort
if Verify(pp, p,m,~a1, . . . ,~aL) = 0.

• Store 〈m,~a1, . . . ,~aL, p〉 in Lp and 〈p,Pi〉 in Lau.
• Output (PROOF, p) to Pi.

5) Verify. On input (VERIFY, p,m,~a1, . . . ,~aL) from Pi.
• If 〈m,~a1, . . . ,~aL, p〉 6∈ Lp, R is honest, and for i =

1, . . . , L, there is no corrupt Pj with 〈Pj ,~a′1, . . . ,~a′i〉
∈ Lde and ~aj � ~a′j for j = 1, . . . , i, set f ← 0.

• Else, output (VERIFY, p) to A; expect response
(VERIFY,P). Set f ← Verify(pp, p,m,~a1, . . . ,~aL).
If P corrupt ∧ f then add 〈p,P〉 to Lau.

• Output (VERIFIED, f) to Pi.
6) Audit. On input (AUDIT, p) from AU , if 〈p,P〉 6∈ Lau,

output (AUDIT, p) to A. Upon obtaining (AUDIT,P)
from A, where P is corrupted, store 〈p,P〉 in Lau. If
now there is a valid record 〈p,P〉 in Lau, then output
(RESULT,P) to AU . Else, output ⊥ to AU .

Fig. 5: Extended credentials functionality Fdac+ (restated Fig. 1).

Advance: Upon input, the epoch counter T provides an
input to Fclock, which advances the epoch.1

Delegate: Delegation is almost the same, except for
the last delegation step (the one to the end user) where the
delegator includes as one attribute the current epoch obtained
from Fclock. In this step, the delegator also deposits the
delegate’s public key with AU .

Present: There are three modifications during presenta-
tion. The first is that the user generates a new pseudonym and
proves consistency. The second is that a credential proof is
only generated if a relevant credential exists for the present
epoch, and the attribute that encodes the current epoch is
always disclosed. The third one is that, as explained in
Section V-C, the user encrypts their public key under the audi-
tor’s public key using AUDITENC and then proves consistent
encryption using AUDITPROVE.

Verify: The changes are dual to the above ones. The
receiver, in addition to the standard credential validation,
checks the consistency of the pseudonym, that the epoch
attribute in the credential proof is valid, and the consistency
of the auditing proof.

Audit: Given a credential proof, the auditor first checks
its validity. If the credential proof is valid, the auditor then

1Other parties interact with Fclock to read the epoch. They technically
also provide input to Fclock, which is required for modeling a synchrony
assumption such as epochs in the otherwise asynchronous UC framework [30].

extracts the ciphertext that encrypts the user’s key and decrypts
it.

Theorem 1. Delegatable credentials protocol Πdac+ securely
realizes Fdac+ in the (Fsmt,Fca,Fcrs,Fclock)-hybrid model,
provided that

• SIGNNYM (Algorithm 3) is a strongly unforgeable sig-
nature,

• the auditing encryption is semantically secure,
• NIZK is a simulation-sound extractable non-interactive

zero-knowledge proof.

The proof holds for static corruption of AU .

Proof. We extend the proof of [14] to the functionality we
added to the scheme. In Setup, the additional setup phase of
auditor AU is proved analogously to that of the root authority.
This includes the extraction of the private key if AU is corrupt;
in that case the simulator sets pp to include the auditor’s public
key as well as public keys for all parties. If AU is honest,
algorithm Param provides a fresh random key. Advance in
Fdac+ means that all issued credential proofs become invalid,
and that the last-level delegations are deleted from Lde. The
same effect appears in the protocol, where the epoch advanced
and inputs with old credential proofs to VERIFY will fail, as
will the presentation of credentials that have been issued in an
earlier epoch. Delegate behaves the same as before.
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In the presentation phase, the credential proof p returned by
the functionality contains multiple additional elements (which
in Fdac+ are generated by the algorithm Present). The first
two are pknym and σnym, the pseudonym generated for this
presentation and the signature on m. The next two are enc and
Paudit, the encryption of the user’s public key pk under the
auditor’s public key apk, and the NIZK proving the correctness
of this encryption. Algorithm Present generates the credential
proof by building a fresh delegation chain with fresh keys
and only the specified attributes; the only exception is that if
AU is corrupt, then the correct user’s public key, as indicated
by the additional argument to Present, is chosen from pp
and encrypted under the auditor’s key. If AU is honest, then
Present includes an encryption of a random message under the
simulated auditor’s public key in p. Present sets the additional
values as follows: pknym and σnym are set to a fresh pseudonym
and a signature relative to pknym and the also fresh user public
key. If AU is corrupt then the encryption of the user public
key under apk and the corresponding zero-knowledge proof
are computed as in the scheme using the values from pp.
If AU is honest, then (as discussed) a random encryption is
chosen and the proof is simulated. This simulation requires
that the encryption scheme is semantically secure and the
NIZK is zero-knowledge to ensure that the consistency proof
for the encryption is indistinguishable from a real proof, and
that as in [14] fresh delegations are indistinguishable from the
real world where the same delegations are used for multiple
presentations.

In the verification phase, in both the real and the ideal cases,
the verification algorithm is used to verify p. While in the ideal
case with honest auditor the auditing proof is simulated, this

will also successfully verify in Verify. The main difference
is that Fdac+ prevents forgeries ideally whereas the protocol
merely relies on the verification of the zero-knowledge proofs.
The functionality also ensures that, for credential proofs that
are accepted, their holders are known, therefore auditing will
succeed. In the ideal world, the simulator knows the private
key of AU (since it is chosen by the simulator if AU is
honest, or extracted if AU is corrupt), and can therefore obtain
the public key of the credential holder. This difference is
indistinguishable by the simulation-sound extractability of the
zero-knowledge proofs and the unforgeability of the signature
scheme. Note that, in contrast with [14], we allow verification
to succeed only for credential proofs p that have either been
generated by Fdac+ or are valid for corrupt parties. This
in particular means that credential proofs are non-malleable,
but non-malleability is already implied by simulation-sound
extractability.

When honest AU inputs a credential proof p, the embedded
ciphertext is decrypted. For credential proofs generated by an
honest Pi this will always succeed. For those not generated
by an honest Pi, the functionality lets the adversary decide
on the identity of the holder; the adversary can choose any
corrupted party. The simulator can decrypt the auditing field
of the credential proofs using the secret key of the auditor
(which in case of a dishonest auditor has been extracted
during setup). Indistinguishability again follows by the zero-
knowledge property of the NIZK.

APPENDIX B
ALGORITHMS
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Algorithm 3 Pseudonym and public key possession proof algorithms

1: procedure MAKENYM(csk)
2: sknym←$Zq
3: pknym := gcskhsknym

4: return sknym, pknym
5: procedure SIGNNYM(pknym, sknym, csk,m)
6: ρ1, ρ2←$Zq
7: com := gρ1hρ2

8: c := HASH(com, pknym,m)
9: pcsk := ρ1 + c · csk

10: pskNym := ρ2 + c · sknym
11: return c, pcsk, pskNym

12: procedure VERIFYNYM(pknym,m, c, pcsk, pskNym)
13: com = gpcskhpskNympk−cnym

14: return c = HASH(com, pknym,m)

15: procedure PROVEPK(csk, cpk, nonce)
16: ρ←$Zq
17: com := gρ

18: c := HASH(com, cpk, nonce)
19: p := ρ+ c · csk
20: return c, p

21: procedure VERIFYPK(c, p, cpk, nonce)
22: com = gpcpk−c

23: return c = HASH(com, cpk, nonce)

Algorithm 4 Non-revocation proof generation and verification algorithms

1: procedure NRPROVE(σ, csk, sknym, epoch)
2: (r′, s′, t′1, t

′
2)←$ GROTH.RANDOMIZE(σ)

3: 〈ρ〉1...4←$Zq
4: com1 := e (r′, gρ12 ) · e

(
g−11 , gρ22

)
5: com2 := e (r′, gρ32 )
6: com3 := gρ21 h

ρ4

7: c := HASH(r′, s′, com1, com2, com3, epoch)
8: p1 := gρ12 t

′
1
c

9: p2 := ρ2 + csk · c
10: p3 := gρ32 t

′
2
c

11: p4 := ρ4 + sknym · c
12: return c, 〈p〉1...4, r′, s′

13: procedure NRSIGN(rsk, cpk, epoch)
14: ε := HASH(epoch)
15: return GROTH.SIGN(rsk; cpk, gε)

16: procedure NRVERIFY(c, 〈p〉1...4, r′, s′, pknym, epoch)
17: if e (r′, s′) 6= e (g1, y1) · e (rpk, g2) then
18: return false
19: ε := HASH(epoch)
20: com1 := e (r′, p1) · e

(
g−11 , g2

)p2 · e (rpk, y1)
−c

21: com2 := e (r′, p3) · e (rpk, y2)
−c · e (g1, g

ε
2)
−c

22: com3 := gp2

1 h
p4pk−cnym

23: c′ := HASH(r′, s′, com1, com2, com3, epoch)
24: return c = c′

Algorithm 5 Auditing proof generation and verification algorithms

1: procedure AUDITPROVE(enc, ρ, cpk, csk, pknym, sknym)
2: 〈ρ〉1...3←$Zq
3: com1 := gρ1apkρ2

4: com2 := gρ2

5: com3 := gρ1hρ3

6: c := HASH(com1, com2, com3, enc, pknym)
7: p1 := ρ1 + c · csk
8: p2 := ρ2 + c · ρ
9: p3 := ρ3 + c · sknym

10: return c, 〈p〉1...3

11: procedure AUDITENC(apk, cpk) . ELGAMAL
12: ρ←$Zq
13: enc := (enc1, enc2) := (cpk · apkρ, gρ)
14: return enc, ρ

15: procedure AUDITVERIFY(c, enc, 〈p〉1...3, pknym)
16: com1 := gp1apkp2enc−c1

17: com2 := gp2enc−c2

18: com3 := gp1hp3pk−cnym

19: c′ := HASH(com1, com2, com3, enc, pknym)
20: return c = c′
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Algorithm 6 Improved proof generation and verification. Green is enhanced, red corrects mistakes in the original code.

1: procedure CREDPROVE(〈ri, si, 〈ti,j〉ni+1
j=1 〉Li=1, csk, 〈cpki〉Li=1, 〈ai,j〉i=1,...,L;j=1...,ni , D, sknym,m)

2: for i = (1, . . . , L) do

3: ρσi ←$Zq , r′i := r
ρσi
i , s′i := s

1
ρσi
i

4: for j = 1, . . . , ni + 1 do

5: t′i,j := t
1
ρσi
i,j

6: 〈ρsi , 〈ρti,j 〉
ni+1
j=1 〉Li=1, 〈ρai,j 〉(i,j)/∈D, 〈ρcpki〉

L−1
i=1 , ρcsk, ρnym←$Zq

7: for i = (1, . . . , L) do
8: if i mod 2 = 1 then
9: g1 := sp.g1, g2 := sp.g2, y := sp.y1

10: else
11: g1 = sp.g2, g2 = sp.g1, y = sp.y2
12: comi,1 := e (g1, ri)

ρσi ·ρsi
[
·e
(
g−11 , g2

)ρcpki−1

]
i6=1

13: comi,2 := e (g1, ri)
ρσi ·ρti,1 · e

(
g1, g

−1
2

)ρcpki [·e (y1, g2)
ρcpki−1 ]i 6=1

14: for j = (1, . . . , ni) do
15: if (i, j) ∈ D then
16: comi,j+2 := e (g1, ri)

ρσi ·ρti,j+1 [·e (yj+1, g2)
ρcpki−1 ]i 6=1

17: else
18: comi,j+2 := e (g1, ri)

ρσi ·ρti,j+1 · e
(
g1, g

−1
2

)ρai,j [·e (yj+1, g2)
ρcpki−1 ]i 6=1

19: comnym := g
ρcpkL
1 hρnym

20: c := HASH(sp.cpk0, 〈r′i, 〈comi,j〉ni+2
j=1 〉Li=1, comnym,〈ai,j〉(i,j)∈D,m)

21: for i = (1, . . . , L) do
22: if i mod 2 = 1 then g := g1
23: else g = g2
24: psi := gρsi s′

c
i ,
[
pcpki := gρcpki cpkci

]
i6=L,

[
pcsk := ρcpkL + c · csk

]
i=L

,
[
pnym := ρnym + c · sknym

]
i=L

25: for j = 1, . . . , ni + 1 do
26: pti,j := gρti,j t′

c
i,j

27: for j : (i, j) /∈ D do
28: pai,j := gρai,j aci,j

29: return c, 〈r′i, psi , 〈pti,j 〉
ni+1
j=1 〉Li=1, 〈pai,j 〉(i,j)/∈D, 〈pcpki〉

L−1
i=1 , pnym,pcsk

30: procedure CREDVERIFY(c, 〈r′i, psi〈pti,j 〉
ni+1
j=1 〉Li=1, 〈pai,j 〉(i,j)/∈D, 〈pcpki〉

L−1
i=1 , pcsk, 〈ai,j〉(i,j)∈D, D, pknym,m)

31: for i = (1, . . . , L) do
32: if i mod 2 = 1 then
33: g1 := sp.g1, g2 := sp.g2, y := sp.y1
34: else
35: g1 = sp.g2, g2 = sp.g1, y = sp.y2
36: comi,1 := e (psi , r

′
i) · e (y1, g2)

−c [·e (g−11 , pcpki
)]
i6=1

[
·e (g1, sp.cpk0)

−c
]
i=1

37: comi,2 := e
(
pti,1 , r

′
i

) [
·e
(
y1, pcpki−1

)]
i 6=1

[
·e (y1, sp.cpk0)

−c
]
i=1

[
·e
(
pcpki , g

−1
2

)]
i6=L

[
·e
(
g1, g

−1
2

)pcsk
]
i=L

38: for j = (1, . . . , ni) do
39: if (i, j) ∈ D then
40: comi,j+2 := e

(
pti,j+1

, r′i
)
· e (ai,j , g2)

−c
[
·e
(
yj+1, pcpki−1

)]
i 6=1

[
·e (yj+1, sp.cpk0)

−c
]
i=1

41: else
42: comi,j+2 := e

(
pti,j+1

, r′i
)
· e
(
pai,j , g

−1
2

) [
·e
(
yj+1, pcpki−1

)]
i 6=1

[
·e (yj+1, sp.cpk0)

−c
]
i=1

43: comnym := gpcsk

1 hpnympk−cnym

44: c′ := HASH(sp.cpk0, 〈r′i, 〈comi,j〉ni+2
j=1 〉Li=1, comnym,〈ai,j〉(i,j)∈D,m)

45: return c = c′
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