Secure and Efficient Query Processing in Outsourced Databases

Range Queries \cite{BKR19, Bog+21}, Point Queries \cite{Bog+21}, \(k\)NN Queries \cite{BKOZ22}

Dmytro Bogatov
dmytro@bu.edu
Built from 3c92001c on February 16, 2023
Boston University
Graduate School of Arts and Sciences
Department of Computer Science
INTRODUCTION
Motivation and overview

- With vast amounts of data, organizations choose to use cloud
- **Challenge:** solutions must be both **secure** and **efficient**
- Security models for an outsourced database system
 - **Snapshot** adversary: steal the hard drive and RAM snapshot
 - **Persistent** adversary: continuously monitor the entire server
- Query types: `SELECT * FROM t1`
 - Point queries: `WHERE zip = '02215'`
 - Range queries: `WHERE age BETWEEN 18 AND 65`
 - **k**NN queries: `ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5`
Motivation and overview

- With vast amounts of data, organizations choose to use cloud
- **Challenge:** solutions must be both *secure* and *efficient*
- Security models for an outsourced database system
 - **Snapshot** adversary: steal the hard drive and RAM snapshot
 - **Persistent** adversary: continuously monitor the entire server
- Query types: SELECT * FROM t1
 - Point queries: WHERE zip = '02215'
 - Range queries: WHERE age BETWEEN 18 AND 65
 - *kNN* queries: ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5
Motivation and overview

• With vast amounts of data, organizations choose to use cloud

• **Challenge:** solutions must be both **secure** and **efficient**

• Security models for an outsourced database system
 • **Snapshot** adversary: steal the hard drive and RAM snapshot
 • **Persistent** adversary: continuously monitor the entire server

• Query types: SELECT * FROM t1
 • Point queries: WHERE zip = '02215'
 • Range queries: WHERE age BETWEEN 18 AND 65
 • \(k\)NN queries: ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5
Motivation and overview

• With vast amounts of data, organizations choose to use cloud
• **Challenge:** solutions must be both **secure** and **efficient**
• Security models for an outsourced database system
 • **Snapshot** adversary: steal the hard drive and RAM snapshot
 • **Persistent** adversary: continuously monitor the entire server
• Query types: **SELECT * FROM t1**
 • Point queries: **WHERE zip = '02215'**
 • Range queries: **WHERE age BETWEEN 18 AND 65**
 • **kNN** queries: **ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5**
Motivation and overview

- With vast amounts of data, organizations choose to use cloud
- **Challenge:** solutions must be both **secure** and **efficient**
- Security models for an outsourced database system
 - **Snapshot** adversary: steal the hard drive and RAM snapshot
 - **Persistent** adversary: continuously monitor the entire server
- Query types: `SELECT * FROM t1`
 - Point queries: `WHERE zip = '02215'`
 - Range queries: `WHERE age BETWEEN 18 AND 65`
 - `kNN` queries: `ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5`
Motivation and overview

- With vast amounts of data, organizations choose to use cloud
- **Challenge**: solutions must be both **secure** and **efficient**
- Security models for an outsourced database system
 - **Snapshot** adversary: steal the hard drive and RAM snapshot
 - **Persistent** adversary: continuously monitor the entire server
- Query types: `SELECT * FROM t1`
 - Point queries: `WHERE zip = '02215'`
 - Range queries: `WHERE age BETWEEN 18 AND 65`
 - kNN queries: `ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5`
Works published during the Ph.D. program

Works published during the Ph.D. program

My work

Works published during the Ph.D. program

My work

Works published during the Ph.D. program

A COMPARATIVE EVALUATION OF ORDER-REVEALING ENCRYPTION SCHEMES AND SECURE RANGE-QUERY PROTOCOLS [BKR19]
The problem

- Model: snapshot, query type: range
- Performance / security tradeoff
- Heterogeneous security definitions and leakage profiles
- **Performance not well-understood**
 - Some schemes are not even implemented
 - Prototype implementation at best
 - Not benchmarked against one another
 - Use different primitive implementations
 - Each claims to be practical and secure

Our solution

- Analyzed security and leakages of the constructions under a common framework
- Analyzed theoretically performance of the schemes and protocols
- Implemented and ran experiments
- Implemented 5 OPE / ORE schemes and 5 range query protocols
- Used same language, framework and primitive implementations
- Benchmarked primitives execution times
- Counted invocations of primitives and I/O requests
The problem

- Model: snapshot, query type: range
- Performance / security tradeoff
- Heterogeneous security definitions and leakage profiles
- Performance not well-understood
 - Some schemes are not even implemented
 - Prototype implementation at best
 - Not benchmarked against one another
 - Use different primitive implementations
 - Each claims to be practical and secure

Our solution

- Analyzed security and leakages of the constructions under a common framework
- Analyzed theoretically performance of the schemes and protocols
- Implemented and ran experiments
 - Implemented 5 OPE / ORE schemes and 5 range query protocols
 - Used same language, framework and primitive implementations
 - Benchmarked primitives execution times
 - Counted invocations of primitives and I/O requests
EPSOLUTE: Efficiently Querying Databases While Providing Differential Privacy [Bog+21]
The problem

- Previous solutions work in the snapshot model (adversary steals the hard drive)
- What about persistent adversary (malicious script with root permissions)?
 Model: persistent, query type: point and range
- Need to protect access pattern and communication volume
 - Using ORAM to hide the access pattern
 Expensive, each request costs $O(\log n)$
 - Adding fake records (noise) to the answer to hide the result size
 How much noise to add to have a guarantee and the least overhead?
 Adding a constant or a uniformly sampled noise is not an option
 Differential Privacy!
The problem

- Previous solutions work in the snapshot model (adversary steals the hard drive)
- What about *persistent* adversary (malicious script with *root* permissions)?
 Model: *persistent*, query type: *point* and *range*
- Need to protect *access pattern* and *communication volume*
- Using ORAM to hide the access pattern
 Expensive, each request costs $O(\log n)$
- Adding fake records (noise) to the answer to hide the result size
 How much noise to add to have a guarantee and the least overhead?
 Adding a constant or a uniformly sampled noise is not an option
 Differential Privacy!
Motivation

The problem

• Previous solutions work in the snapshot model (adversary steals the hard drive)
• What about persistent adversary (malicious script with root permissions)?

 Model: persistent, query type: point and range

• Need to protect access pattern and communication volume
• Using ORAM to hide the access pattern

 Expensive, each request costs $O(\log n)$

• Adding fake records (noise) to the answer to hide the result size

 How much noise to add to have a guarantee and the least overhead?
 Adding a constant or a uniformly sampled noise is not an option
 Differential Privacy!
Definition (Differential Privacy, adapted from [Dwo+06; DMNS06])

A randomized algorithm \(A \) is \((\epsilon, \delta)\)-differentially private if for all \(D_1 \sim D_2 \in \mathcal{X}^n \), and for all subsets \(\mathcal{O} \) of the output space of \(A \),

\[
\Pr \left[A(D_1) \in \mathcal{O} \right] \leq \exp(\epsilon) \cdot \Pr \left[A(D_2) \in \mathcal{O} \right] + \delta.
\]

How to make sense of it?

• Differential Privacy is a property of an algorithm

 What about \(\epsilon \) and \(\delta \)?

• How to construct such an algorithm?

 Laplace Perturbation Method!

• What if negative value is sampled?

 Cannot truncate one side, must shift entire distribution.
Definition (Differential Privacy, adapted from [Dwo+06; DMNS06])

A randomized algorithm A is (ϵ, δ)-differentially private if for all $D_1 \sim D_2 \in \mathcal{X}^n$, and for all subsets \mathcal{O} of the output space of A,

$$\Pr[A(D_1) \in \mathcal{O}] \leq \exp(\epsilon) \cdot \Pr[A(D_2) \in \mathcal{O}] + \delta.$$

How to make sense of it?

- Differential Privacy is a property of an algorithm

 What about ϵ and δ?

- How to construct such an algorithm?
 Laplace Perturbation Method!

- What if negative value is sampled?
 Cannot truncate one side, must shift entire distribution
Definition (Differential Privacy, adapted from [Dwo+06; DMNS06])

A randomized algorithm A is (ϵ, δ)-differentially private if for all $D_1 \sim D_2 \in X^n$, and for all subsets O of the output space of A,

$$\Pr [A(D_1) \in O] \leq \exp(\epsilon) \cdot \Pr [A(D_2) \in O] + \delta.$$

How to make sense of it?

- Differential Privacy is a property of an algorithm
 What about ϵ and δ?
- How to construct such an algorithm?
 Laplace Perturbation Method!
- What if negative value is sampled?
 Cannot truncate one side, must shift entire distribution
Definition (Differential Privacy, adapted from [Dwo+06; DMNS06])

A randomized algorithm A is (ϵ, δ)-differentially private if for all $D_1 \sim D_2 \in \mathcal{X}^n$, and for all subsets O of the output space of A,

$$\Pr[A(D_1) \in O] \leq \exp(\epsilon) \cdot \Pr[A(D_2) \in O] + \delta.$$

How to make sense of it?

- Differential Privacy is a property of an algorithm
 - What about ϵ and δ?
- How to construct such an algorithm?
 - Laplace Perturbation Method!
- What if negative value is sampled?
 - Cannot truncate one side, must shift entire distribution
Definition (Differential Privacy, adapted from [Dwo+06; DMNS06])

A randomized algorithm A is (ϵ, δ)-differentially private if for all $D_1 \sim D_2 \in \mathcal{X}^n$, and for all subsets O of the output space of A,

$$\Pr [A(D_1) \in O] \leq \exp(\epsilon) \cdot \Pr [A(D_2) \in O] + \delta.$$

How to make sense of it?

• Differential Privacy is a property of an algorithm

 What about ϵ and δ?

• How to construct such an algorithm?

 Laplace Perturbation Method!

• What if negative value is sampled?

 Cannot truncate one side, must shift entire distribution
Definition (Computationally Differentially Private Outsourced Database System)

We say that an outsourced database system Π is (ϵ, δ)-computationally differentially private (a.k.a. CDP-ODB) if for every polynomial time distinguishing adversary A, for every neighboring databases $D \sim D'$, and for every query sequence $q_1, \ldots, q_m \in Q^m$ where $m = \text{poly}(\lambda)$,

$$\Pr[A(1^\lambda, \text{VIEW}_{\Pi,S}(D, q_1, \ldots, q_m)) = 1] \leq \exp \epsilon \cdot \Pr[A(1^\lambda, \text{VIEW}_{\Pi,S}(D', q_1, \ldots, q_m)) = 1] + \delta + \text{negl}(\lambda),$$

the probability is over the randomness of the distinguishing adversary A and the protocol Π.

Note:

- Entire view of the adversary is DP-protected
- Implies protection against communication volume and access pattern leakages
- Query sequence $q_1, \ldots, q_m \in Q^m$ is fixed
- $\text{negl}(\lambda)$ needed for the computational (as opposed to information-theoretical) DP definition
Definition (Computationally Differentially Private Outsourced Database System)

We say that an outsourced database system Π is (ϵ, δ)-computationally differentially private (a.k.a. CDP-ODB) if for every polynomial time distinguishing adversary A, for every neighboring databases $D \sim D'$, and for every query sequence $q_1, \ldots, q_m \in Q^m$ where $m = \text{poly}(\lambda)$,

$$\Pr \left[A \left(1^\lambda, \text{VIEW}_{\Pi,S} (D, q_1, \ldots, q_m) \right) = 1 \right] \leq \exp \epsilon \cdot \Pr \left[A \left(1^\lambda, \text{VIEW}_{\Pi,S} (D', q_1, \ldots, q_m) \right) = 1 \right] + \delta + \text{negl}(\lambda),$$

the probability is over the randomness of the distinguishing adversary A and the protocol Π.

Note:

- Entire view of the adversary is DP-protected
- Implies protection against communication volume and access pattern leakages
- Query sequence $q_1, \ldots, q_m \in Q^m$ is fixed
- Negl(λ) needed for the computational (as opposed to information-theoretical) DP definition
Single-Threaded ϵpsolute protocol

Server:
- ORAM Storage
- ORAM read requests
- ORAM (point queries)
- DP tree (range queries)

User:
- DP histogram
- Key
- Noise

Client:
- Client
- Noise
- Query: "Salaries $40K-50K"

Record index:
- Search key
- Record ID
- Salary $40K: IDs 56, 46, 89
- Salary $50K: IDs 85, 38, 63
- ...
Parallel εpsolute

- Single-threaded version is prohibitively slow, must parallelize
 Assume single-threaded solution generates r real and f fake records
- Split U and S state into m ORAMs, run as separate machines
- Partition records randomly (by ID) into m partitions, generate m record indexes
- What to do about sanitizer \mathcal{DS}?

Π_{separate}: separate sanitizer \mathcal{DS} per ORAM
 - Each ORAM incurs noise comparable to f
 - Win by splitting ORAM work r into m partitions and lose by multiplying noise f times m
 - That is, all ORAMs are processing $r + mf$ records in parallel

Π_{shared}: shared sanitizer \mathcal{DS} for all ORAMs
 - Same number of total records per ORAM
 - Generated noise is larger than f (say, αf), but split among m ORAMs
 - That is, all ORAMs are processing $r + \alpha f$ records in parallel

Π_{shared} wins if $\alpha < m$, which it is for almost all values of m ($m \geq 4$).
Parallel \mathcal{E}psolute

- Single-threaded version is prohibitively slow, must parallelize
 - Assume single-threaded solution generates r real and f fake records
- Split U and S state into m ORAMs, run as separate machines
- Partition records randomly (by ID) into m partitions, generate m record indexes
- What to do about sanitizer $\mathcal{D}S$?

Π_{separate}: separate sanitizer $\mathcal{D}S$ per ORAM
 - Each ORAM incurs noise comparable to f
 - Win by splitting ORAM work r into m partitions
 and lose by multiplying noise f times m
 - That is, all ORAMs are processing $r + mf$
 records in parallel

Π_{shared}: shared sanitizer $\mathcal{D}S$ for all ORAMs
 - Same number of total records per ORAM
 - Generated noise is larger than f (say, αf), but
 split among m ORAMs
 - That is, all ORAMs are processing $r+\alpha f$ records
 in parallel

Π_{shared} wins if $\alpha < m$, which it is for almost all values of m ($m \geq 4$)
Parallel εpsolute

- Single-threaded version is prohibitively slow, must parallelize
 Assume single-threaded solution generates r real and f fake records
- Split U and S state into m ORAMs, run as separate machines
- Partition records randomly (by ID) into m partitions, generate m record indexes
- What to do about sanitizer \mathcal{DS}?

Π_{separate}: separate sanitizer \mathcal{DS} per ORAM
 - Each ORAM incurs noise comparable to f
 - Win by splitting ORAM work r into m partitions and lose by multiplying noise f times m
 - That is, all ORAMs are processing $r + mf$ records in parallel

Π_{shared}: shared sanitizer \mathcal{DS} for all ORAMs
 - Same number of total records per ORAM
 - Generated noise is larger than f (say, αf), but split among m ORAMs
 - That is, all ORAMs are processing $r + \alpha f$ records in parallel

Π_{shared} wins if $\alpha < m$, which it is for almost all values of m ($m \geq 4$)
Parallel εpsolute

- Single-threaded version is prohibitively slow, must parallelize
 Assume single-threaded solution generates r real and f fake records
- Split U and S state into m ORAMs, run as separate machines
- Partition records randomly (by ID) into m partitions, generate m record indexes
- What to do about sanitizer \mathcal{DS}?

Π_{separate}: separate sanitizer \mathcal{DS} per ORAM
- Each ORAM incurs noise comparable to f
- Win by splitting ORAM work r into m partitions and lose by multiplying noise f times m
- That is, all ORAMs are processing $r + mf$ records in parallel

Π_{shared}: shared sanitizer \mathcal{DS} for all ORAMs
- Same number of total records per ORAM
- Generated noise is larger than f (say, αf), but split among m ORAMs
- That is, all ORAMs are processing $r + \alpha f$ records in parallel

Π_{shared} wins if $\alpha < m$, which it is for almost all values of m ($m \gtrapprox 4$)
Parallel ξpsolute diagram (with improvements)

1. Query: ages 18 to 21
2. True indices
3. Computing the amount of noise
4. ORAM reqs: ORAM IDs Block IDs
5. ORAM GET requests
6. pruning fake records

Client

Trustx user party U

Untrusted server party S

Application

User

Lightweight ORAM machine

KVS Store

KVS Store

KVS Store

KVS Store

KVS Store

DP histogram

DP tree

DP tree
Experiments: scalability

Scalability measurements for Π_{shared} and Π_{separate} (DS is a DP sanitizer)
Experiments: against other mechanisms

Different range-query mechanisms (log scale).
Default setting: 10^6 4 KiB uniformly-sampled records with the domain 10^4.

- MySQL: 97 ms
- PostgreSQL: 220 ms
- Epsolute: 840 ms
- Linear Scan: 15 s
- Shrinkwrap*: 19.5 min
k-anon: Secure Similarity Search in Outsourced Databases [BKOZ22]
General idea

- Model: **snapshot**, query type: **kNN** in arbitrary dimensions
 - Nearest-neighbor search needs definitions of **object** and **distance**
 - **Object** can be 2D/3D location, or a document embedding (high-dimensional vector)
 - **Distance** can be a Euclidean distance or inner (dot) product distance
 - **Query** then can be “5 closest restaurants” or “3 most similar documents”

- Our approach is to apply an **approximate property-preserving encryption** on objects
 - Query protocol is then similar to OPE / ORE
 - Existing nearest-neighbor search algorithms then work naturally

- Study how accuracy of search and efficiency of attacks drop with higher security
• Model: snapshot, query type: kNN in arbitrary dimensions

• Nearest-neighbor search needs definitions of object and distance
 Object can be 2D/3D location, or a document embedding (high-dimensional vector)
 Distance can be a Euclidean distance or inner (dot) product distance
 Query then can be “5 closest restaurants” or “3 most similar documents”

• Our approach is to apply an approximate property-preserving encryption on objects
 Query protocol is then similar to OPE / ORE
 Existing nearest-neighbor search algorithms then work naturally

• Study how accuracy of search and efficiency of attacks drop with higher security
General idea

- Model: snapshot, query type: kNN in arbitrary dimensions
- Nearest-neighbor search needs definitions of object and distance
 - Object can be 2D/3D location, or a document embedding (high-dimensional vector)
 - Distance can be a Euclidean distance or inner (dot) product distance
 - Query then can be “5 closest restaurants” or “3 most similar documents”
- Our approach is to apply an approximate property-preserving encryption on objects
 - Query protocol is then similar to OPE / ORE
 - Existing nearest-neighbor search algorithms then work naturally
- Study how accuracy of search and efficiency of attacks drop with higher security
General idea

- Model: snapshot, query type: kNN in arbitrary dimensions
- Nearest-neighbor search needs definitions of object and distance
 - Object can be 2D/3D location, or a document embedding (high-dimensional vector)
 - Distance can be a Euclidean distance or inner (dot) product distance
 - Query then can be “5 closest restaurants” or “3 most similar documents”
- Our approach is to apply an approximate property-preserving encryption on objects
 - Query protocol is then similar to OPE / ORE
 - Existing nearest-neighbor search algorithms then work naturally
- Study how accuracy of search and efficiency of attacks drop with higher security
∀x, y, z ∈ X : \text{DIST}(x, y) < \text{DIST}(x, z) − \beta \implies \text{DIST}(f(x), f(y)) < \text{DIST}(f(x), f(z))

If distance between x and z is larger than the distance between x and y by more than \(\beta \), then the encryption of z will be further than the encryption of y from the encryption of x.

Distance Comparison Preserving Encryption scheme [FGHO21]
Setup and query protocols: for given β
- Generate encryption key
- Encrypt dataset and queries set with β
- Run queries using conventional nearest-neighbor search (e.g., FAISS)
- Report search accuracy metrics

TREC 2020 dataset is 8.8M documents embedded with fine-tuned BERT (768 dimensions)
Thanks Hamed Zamani for the dataset

Query is a 768-dimensional embedding asking for $k = 1000$ closest documents
TREC has a set of documents, a set of topics (questions), and relevance judgments (right answers)

We report result set distance and difference, and ranking quality Recall, MRR and nDCG
Set distance and difference measure pure kNN accuracy
Recall, MRR and nDCG report ranking quality using relevance, common in information retrieval literature
Search accuracy and TREC dataset

- Setup and query protocols: for given β
 - Generate encryption key
 - Encrypt dataset and queries set with β
 - Run queries using conventional nearest-neighbor search (e.g., FAISS)
 - Report search accuracy metrics
- TREC 2020 dataset is 8.8M documents embedded with fine-tuned BERT (768 dimensions)
 Thanks Hamed Zamani for the dataset
- Query is a 768-dimensional embedding asking for $k = 1000$ closest documents
- TREC has a set of documents, a set of topics (questions), and relevance judgments (right answers)
- We report result set distance and difference, and ranking quality Recall, MRR and nDCG
 Set distance and difference measure pure kNN accuracy
 Recall, MRR and nDCG report ranking quality using relevance, common in information retrieval literature
Search accuracy and TREC dataset

- Setup and query protocols: for given β
 - Generate encryption key
 - Encrypt dataset and queries set with β
 - Run queries using conventional nearest-neighbor search (e.g., FAISS)
 - Report search accuracy metrics

- TREC 2020 dataset is 8.8M documents embedded with fine-tuned BERT (768 dimensions)
 Thanks Hamed Zamani for the dataset

- Query is a 768-dimensional embedding asking for $k = 1000$ closest documents
 TREC has a set of documents, a set of topics (questions), and relevance judgments (right answers)

- We report result set distance and difference, and ranking quality Recall, MRR and nDCG
 Set distance and difference measure pure kNN accuracy
 Recall, MRR and nDCG report ranking quality using relevance, common in information retrieval literature
Setup and query protocols: for given β
- Generate encryption key
- Encrypt dataset and queries set with β
- Run queries using conventional nearest-neighbor search (e.g., FAISS)
- Report search accuracy metrics

TREC 2020 dataset is 8.8M documents embedded with fine-tuned BERT (768 dimensions)
Thanks Hamed Zamani for the dataset

Query is a 768-dimensional embedding asking for $k = 1000$ closest documents

TREC has a set of documents, a set of topics (questions), and relevance judgments (right answers)

We report result set distance and difference, and ranking quality Recall, MRR and nDCG
Set distance and difference measure pure kNN accuracy
Recall, MRR and nDCG report ranking quality using relevance, common in information retrieval literature
Search accuracy results

Rank quality metrics, result set distance and difference for $\beta \in \{0, 1, \ldots, 50\}$
Black-box inversion attack [SR20]

- ML model trains on document-embedding pairs and predicts a set of words from embedding
 - Model is an LSTM trained for 30 epochs
 - Original attack used BookCorpus [Zhu+15] dataset, but we will use TREC
- We evaluate the attack on encrypted embeddings
 - We also add plaintext and random embeddings for the baselines
 - Public model: adversary can use the embedding model, therefore, trains on plaintexts
 - Private model: adversary can only use the entire system, therefore, trains on ciphertexts
 - In both cases the model predicts the words from the encrypted embedding
- We measure precision, recall and F$_1$ score along with the percent of stop-words
 - Stop-words are common words like “a”, “the”, pronouns, even punctuation and digits
Black-box inversion attack [SR20]

- ML model trains on document-embedding pairs and predicts a set of words from embedding. Model is an LSTM trained for 30 epochs.
- Original attack used BookCorpus [Zhu+15] dataset, but we will use TREC.
- We evaluate the attack on encrypted embeddings.
 - We also add plaintext and random embeddings for the baselines.
 - **Public model**: adversary can use the embedding model, therefore, trains on plaintexts.
 - **Private model**: adversary can only use the entire system, therefore, trains on ciphertexts.
 - In both cases the model predicts the words from the encrypted embedding.
- We measure precision, recall and F1 score along with the percent of stop-words.
 Stop-words are common words like "a", "the", pronouns, even punctuation and digits.
Black-box inversion attack [SR20]

- ML model trains on document-embedding pairs and predicts a set of words from embedding
 Model is an LSTM trained for 30 epochs
 Original attack used BookCorpus [Zhu+15] dataset, but we will use TREC
- We evaluate the attack on encrypted embeddings
 - We also add plaintext and random embeddings for the baselines
 - **Public model**: adversary can use the embedding model, therefore, trains on plaintexts
 - **Private model**: adversary can only use the entire system, therefore, trains on ciphertexts
 - In both cases the model predicts the words from the encrypted embedding
- We measure precision, recall and F1 score along with the percent of stop-words
 Stop-words are common words like “a”, “the”, pronouns, even punctuation and digits
Attack performance results: public model (trained on plaintext)
Attack performance results: private model (trained on ciphertext)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Precision</th>
<th>Recall</th>
<th>F_1 score</th>
<th>% of non-stop-words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encrypted with $\beta = 0.0$</td>
<td>38.84</td>
<td>27.64</td>
<td>32.30</td>
<td>2.31</td>
</tr>
<tr>
<td>Encrypted with $\beta = 4.0$</td>
<td>36.28</td>
<td>26.61</td>
<td>30.70</td>
<td>3.21</td>
</tr>
<tr>
<td>Random embeddings</td>
<td>36.07</td>
<td>26.61</td>
<td>30.62</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Tradeoff between search accuracy and attack performance (public model, trained on plaintext)
CONCLUSIONS
Future work directions

• Focus on practicality and reproducibility!
 • Property-preserving encryption is practical [BKR19; BKOZ22]
 May not be ideally-secure, and does not have to be
 Benchmark the scheme and quantify the leakage
 • Hardware gets cheaper, consider “heavy” primitives and protocols [Bog+21]
 ORAM, homomorphic encryption, garbled circuits, zero-knowledge proofs, etc
 Performance may be acceptable with optimizations, specialized hardware and parallelization
 • More database query types in outsourced model
 JOIN, GROUP BY, AGGREGATE, custom predicates, etc
Future work directions

• Focus on practicality and reproducibility!

• Property-preserving encryption is practical [BKR19; BKOZ22]
 May not be ideally-secure, and does not have to be
 Benchmark the scheme and quantify the leakage

• Hardware gets cheaper, consider “heavy” primitives and protocols [Bog+21]
 ORAM, homomorphic encryption, garbled circuits, zero-knowledge proofs, etc
 Performance may be acceptable with optimizations, specialized hardware and parallelization

• More database query types in outsourced model
 JOIN, GROUP BY, AGGREGATE, custom predicates, etc
Future work directions

• **Focus on practicality and reproducibility!**

• Property-preserving encryption is practical [BKR19; BKOZ22]
 May not be ideally-secure, and does not have to be
 Benchmark the scheme and quantify the leakage

• Hardware gets cheaper, consider “heavy” primitives and protocols [Bog+21]
 ORAM, homomorphic encryption, garbled circuits, zero-knowledge proofs, etc
 Performance may be acceptable with optimizations, specialized hardware and parallelization

• More database query types in outsourced model
 JOIN, GROUP BY, AGGREGATE, custom predicates, etc
Future work directions

- **Focus on practicality and reproducibility!**
- Property-preserving encryption is practical [BKR19; BKOZ22]
 May not be ideally-secure, and does not have to be
 Benchmark the scheme and quantify the leakage
- Hardware gets cheaper, consider “heavy” primitives and protocols [Bog+21]
 ORAM, homomorphic encryption, garbled circuits, zero-knowledge proofs, etc
 Performance may be acceptable with optimizations, specialized hardware and parallelization
- More database query types in outsourced model
 JOIN, GROUP BY, AGGREGATE, custom predicates, etc
Acknowledgements
Secure and Efficient Query Processing in Outsourced Databases

Range Queries [BKR19; Bog+21], Point Queries [Bog+21], kNN Queries [BKOZ22]

Dmytro Bogatov
dmytro@bu.edu

Built from 3c92001c on February 16, 2023

Boston University
Graduate School of Arts and Sciences
Department of Computer Science
REFERENCES

[Xie+16] Dong Xie, Guanru Li, Bin Yao, Xuan Wei, Xiaokui Xiao, Yunjun Gao, and Minyi Guo. “Practical private shortest path computation based on oblivious storage”. In: *2016 IEEE 32nd International Conference on Data Engineering (ICDE)*. IEEE. 2016, pp. 361–372.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Primitive usage</th>
<th>Ciphertext size, Leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Encryption</td>
<td>Comparison</td>
</tr>
<tr>
<td>BCLO [BCLO09]</td>
<td>n HG</td>
<td>none</td>
</tr>
<tr>
<td>CLWW [CLWW16]</td>
<td>n PRF</td>
<td>none</td>
</tr>
<tr>
<td>Lewi-Wu [LW16]</td>
<td>$\frac{2n}{d}$ PRP</td>
<td>$\frac{n}{2^d}$ Hash</td>
</tr>
<tr>
<td>CLOZ [Cas+18]</td>
<td>n PRF</td>
<td>n^2 PPH</td>
</tr>
<tr>
<td></td>
<td>n PPH</td>
<td>n^2 PPH</td>
</tr>
<tr>
<td></td>
<td>1 PRP</td>
<td></td>
</tr>
<tr>
<td>FH-OPE [Ker15]</td>
<td>1 Traversal</td>
<td>3 Traversals</td>
</tr>
</tbody>
</table>

Table 1: [BKR19, Table 1]. Primitive usage by OPE / ORE schemes. Ordered by security rank — most secure below. n is the input length in bits, d is a block size for Lewi-Wu [LW16] scheme, λ is a PRF output size, N is a total data size, HG is a hyper-geometric distribution sampler, PPH is a property-preserving hash with h-bit outputs built with bilinear maps and **bolded** are weak points of the schemes.
Range query protocols

<table>
<thead>
<tr>
<th>Protocol</th>
<th>I/O requests</th>
<th>Leakage</th>
<th>Communication (result excluded)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construction</td>
<td>Query</td>
<td>Construction</td>
</tr>
<tr>
<td>B+ tree with ORE</td>
<td>$\log_B \frac{N}{B}$</td>
<td>$\log_B \frac{N}{B} + \frac{r}{B}$</td>
<td>Same as ORE</td>
</tr>
<tr>
<td>Kerschbaum [KT19]</td>
<td>$\frac{N}{B}$</td>
<td>$\log_2 \frac{N}{B} + \frac{r}{B}$</td>
<td>Total order</td>
</tr>
<tr>
<td>POPE [RACY16] warm</td>
<td>1</td>
<td>$\log_L \frac{N}{B} + \frac{r}{B}$</td>
<td>Partial order</td>
</tr>
<tr>
<td>POPE [RACY16] cold</td>
<td>1</td>
<td>$\log_L \frac{N}{B} + \frac{r}{B}$</td>
<td>Fully hiding</td>
</tr>
<tr>
<td>Logarithmic-BRC [Dem+16]</td>
<td>—</td>
<td>r</td>
<td>Same as SSE</td>
</tr>
<tr>
<td>ORAM</td>
<td>$\log^2 \frac{N}{B}$</td>
<td>$\log_2 \frac{N}{B} (\log_B \frac{N}{B} + \frac{r}{B})$</td>
<td>Fully hiding (access pattern)</td>
</tr>
</tbody>
</table>

Table 2: [BKR19, Tables 2]. Performance of the range query protocols. Ordered by security rank — most secure below. N is a total data size, B is an I/O page size, L is a POPE tree branching factor, r is the result size in records and **bolded** are weak points of the protocols.
One of the experimental results

![Bar chart showing the number of I/O requests for different datasets and encryption methods. The x-axis represents various encryption methods such as No encryption, BCLO, CLWW, FH-OPE, Lewi-Wu, CLOZ, Kerschbaum, POPE cold, POPE warm, Logarithmic, BRC, ORAM. The y-axis represents the number of I/O requests ranging from 0 to 2,500. The chart includes bars for Uniform distribution, Normal distribution, and CA public employees dataset. The query stage number of I/O requests is shown at the bottom.]
Access pattern and ORAM

Access pattern is a sequence of memory accesses y, where each access consists of the memory location o, read r or write w operation and the data d to be written.

Oblivious RAM (ORAM) is a mechanism that hides the accesses pattern. More formally, ORAM is a protocol between the client C (who accesses) and the server S (who stores), with a guarantee that the view of the server is indistinguishable for any two sequences of the same lengths.

$$|y_1| = |y_2|$$

$$\text{VIEW}_S(y_1) \approx \text{VIEW}_S(y_2)$$

ORAM protocol

1. **Client C**
2. **Server S**
 $$y = (r, i, \perp)_{i=1}^5$$
3. (client state)
4. (server state)
 $$\text{ORAM}(y)$$
 $$\{d_1, d_2, d_3, d_4, d_5\}$$

Square Root ORAM [Gol87], Hierarchical ORAM [GO96], Binary-Tree ORAM [SCSL11], Interleave Buffer Shuffle Square Root ORAM [Xie16], TP-ORAM [SSS12], PathORAM [Ste13] and TaORAM [Sah16]. ORAM incurs at least logarithmic overhead in the number of stored records. [GO96]
On impossibility of adaptive queries

Why is the query sequence $q_1, \ldots, q_m \in Q^m$ fixed?

• Suppose neighboring medical databases differ in one record with a rare diagnosis “Alzheimer’s disease”
• A medical professional, who is a user (and not an adversary) queries the database
 • for that diagnosis first
 SELECT name FROM patients WHERE condition = 'ALZ'
 • if there is a record, she queries the senior patients next
 SELECT name FROM patients WHERE age >= 65
 • otherwise she queries the general population, resulting in many more records
 SELECT name FROM patients
• Adversary can know the answer to the first query by observing result size of the second
• Efficient system cannot return nearly the same number of records in both cases, thus, the adversary can distinguish
Why is the query sequence $q_1, \ldots, q_m \in Q^m$ fixed?

- Suppose neighboring medical databases differ in one record with a rare diagnosis “Alzheimer’s disease”
- A medical professional, who is a user (and not an adversary) queries the database
 - for that diagnosis first
    ```sql
    SELECT name FROM patients WHERE condition = 'ALZ'
    ```
 - if there is a record, she queries the senior patients next
    ```sql
    SELECT name FROM patients WHERE age >= 65
    ```
 - otherwise she queries the general population, resulting in many more records
    ```sql
    SELECT name FROM patients
    ```
- Adversary can know the answer to the first query by observing result size of the second
- Efficient system cannot return nearly the same number of records in both cases, thus, the adversary can distinguish
Why is the query sequence $q_1, \ldots, q_m \in Q^m$ fixed?

- Suppose neighboring medical databases differ in one record with a rare diagnosis “Alzheimer’s disease”
- A medical professional, who is a user (and not an adversary) queries the database
 - for that diagnosis first
 SELECT name FROM patients WHERE condition = 'ALZ'
 - if there is a record, she queries the senior patients next
 SELECT name FROM patients WHERE age >= 65
 - otherwise she queries the general population, resulting in many more records
 SELECT name FROM patients
- Adversary can know the answer to the first query by observing result size of the second
- Efficient system cannot return nearly the same number of records in both cases, thus, the adversary can distinguish
Algorithm 1: Distance Comparison Preserving Encryption, adapted from [FGHO21, Algorithm 2]

KEYGEN(1^λ, \mathbb{S})

1: $s \leftarrow \mathbb{S}$
2: $k \leftarrow \{0, 1\}^\lambda$
3: return (s, k)

ENC(s, k, \vec{m})

1: $n \leftarrow \{0, 1\}^\lambda$
2: $\text{coins}_n || \text{coins}_u \leftarrow \text{PRF}(k, n)$
3: $\vec{n} \leftarrow \mathbb{S} \text{NORMAL}(0, l_d; \text{coins}_n)$
4: $u \leftarrow \mathbb{S} \text{UNIFORM}(0, 1; \text{coins}_u)$
5: $x \leftarrow \frac{s \beta}{4} \cdot \sqrt{u}$
6: $\vec{\delta} \leftarrow \frac{\vec{n}}{\|\vec{n}\|} \cdot x$
7: $\vec{c} \leftarrow s \cdot \vec{m} + \vec{\delta}$
8: return \vec{c}

DEC(s, k, (\vec{c}, n))

1: $\text{coins}_n || \text{coins}_u \leftarrow \text{PRF}(k, n)$
2: $\vec{n} \leftarrow \mathbb{S} \text{NORMAL}(0, l_d; \text{coins}_n)$
3: $u \leftarrow \mathbb{S} \text{UNIFORM}(0, 1; \text{coins}_u)$
4: $x \leftarrow \frac{s \beta}{4} \cdot \sqrt{u}$
5: $\vec{\delta} \leftarrow \frac{\vec{n}}{\|\vec{n}\|} \cdot x$
6: $\vec{m} \leftarrow \frac{\vec{c} - \vec{\delta}}{s}$
7: return \vec{m}