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INTRODUCTION



Motivation and overview

• With vast amounts of data, organizations choose to use cloud
• Challenge: solutions must be both secure and efficient
• Security models for an outsourced database system
• Snapshot adversary: steal the hard drive and RAM snapshot
• Persistent adversary: continuously monitor the entire server

• Query types: SELECT * FROM t1
• Point queries: WHERE zip = '02215'
• Range queries: WHERE age BETWEEN 18 AND 65
• kNN queries: ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5
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A COMPARATIVE EVALUATION OF
ORDER-REVEALING ENCRYPTION
SCHEMES AND SECURE RANGE-QUERY
PROTOCOLS [BKR19]



Survey of OPE / ORE schemes [BKR19]

The problem
• Model: snapshot, query type: range
• Performance / security tradeoff
• Heterogeneous security definitions and leak-
age profiles

• Performance not well-understood
• Some schemes are not even implemented
• Prototype implementation at best
• Not benchmarked against one another
• Use different primitive implementations
• Each claims to be practical and secure

Our solution
• Analyzed security and leakages of the con-
structions under a common framework

• Analyzed theoretically performance of the
schemes and protocols

• Implemented and ran experiments
• Implemented 5 OPE / ORE schemes and 5
range query protocols

• Used same language, framework and prim-
itive implementations

• Benchmarked primitives execution times
• Counted invocations of primitives and I/O
requests

ORE table Protocols table Plot
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EPSOLUTE: EFFICIENTLY QUERYING
DATABASES WHILE PROVIDING
DIFFERENTIAL PRIVACY [BOG+21]



Motivation

The problem
• Previous solutions work in the snapshot model (adversary steals the hard drive)
• What about persistent adversary (malicious script with root permissions)?
Model: persistent, query type: point and range

• Need to protect access pattern and communication volume
• Using ORAM to hide the access pattern
Expensive, each request costs O(log n) ORAM definition

• Adding fake records (noise) to the answer to hide the result size
How much noise to add to have a guarantee and the least overhead?
Adding a constant or a uniformly sampled noise is not an option
Differential Privacy!
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Differential Privacy, LPA and Sanitation

Definition (Differential Privacy, adapted from [Dwo+06; DMNS06])
A randomized algorithm A is (ϵ, δ)-differentially private if for all D1 ∼ D2 ∈ X n, and for all
subsets O of the output space of A,

Pr [A (D1) ∈ O] ≤ exp(ϵ) · Pr [A (D2) ∈ O] + δ .

How to make sense of it?
• Differential Privacy is a property of an algorithm
What about ϵ and δ?

• How to construct such an algorithm?
Laplace Perturbation Method!

• What if negative value is sampled?
Cannot truncate one side, must shift entire distribution
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Differentially Private Outsourced Database System

Definition (Computationally Differentially Private Outsourced Database System)
We say that an outsourced database system Π is (ϵ, δ)-computationally differentially private
(a.k.a. CDP-ODB) if for every polynomial time distinguishing adversary A, for every neighboring
databases D ∼ D′, and for every query sequence q1, . . . ,qm ∈ Qm where m = poly(λ),

Pr [A (1λ, VIEWΠ,S (D,q1, . . . ,qm)
)
= 1] ≤
exp ϵ · Pr

[
A
(
1λ, VIEWΠ,S (D′,q1, . . . ,qm)

)
= 1

]
+ δ + negl(λ) ,

the probability is over the randomness of the distinguishing adversary A and the protocol Π.
Note:
• Entire view of the adversary is DP-protected
• Implies protection against communication volume and access pattern leakages
• Query sequence q1, . . . ,qm ∈ Qm is fixed See why

• negl(λ) needed for the computational (as opposed to information-theoretical) DP definition
7
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Single-Threaded Epsolute

Single-Threaded Epsolute protocol

8



Parallel Epsolute

• Single-threaded version is prohibitively slow, must parallelize
Assume single-threaded solution generates r real and f fake records

• Split U and S state into m ORAMs, run as separate machines
• Partition records randomly (by ID) into m partitions, generate m record indexes
• What to do about sanitizer DS?

Πseparate: separate sanitizer DS per ORAM
• Each ORAM incurs noise comparable to f
• Win by splitting ORAMwork r intom partitions
and lose by multiplying noise f times m

• That is, all ORAMs are processing r + mf
records in parallel

Πshared: shared sanitizer DS for all ORAMs
• Same number of total records per ORAM
• Generated noise is larger than f (say, αf), but
split among m ORAMs

• That is, all ORAMs are processing r+αf records
in parallel

Πshared wins if α < m, which it is for almost all values of m (m ⪆ 4)
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Parallel Epsolute diagram (with improvements)
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Experiments: scalability

Scalability measurements for Πshared and Πseparate (DS is a DP sanitizer)

11



Experiments: against other mechanisms

Different range-query mechanisms (log scale).
Default setting: 106 4 KiB uniformly-sampled records with the domain 104.

12



k-AnOn: SECURE SIMILARITY SEARCH
IN OUTSOURCED DATABASES
[BKOZ22]



General idea

• Model: snapshot, query type: kNN in arbitrary dimensions
• Nearest-neighbor search needs definitions of object and distance
Object can be 2D/3D location, or a document embedding (high-dimensional vector)
Distance can be a Euclidean distance or inner (dot) product distance
Query then can be “5 closest restaurants” or “3 most similar documents”

• Our approach is to apply an approximate property-preserving encryption on objects
Query protocol is then similar to OPE / ORE
Existing nearest-neighbor search algorithms then work naturally

• Study how accuracy of search and efficiency of attacks drop with higher security

13
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Distance Comparison Preserving Encryption

∀x, y, z ∈ X : DIST (x, y) < DIST (x, z)− β =⇒ DIST (f(x), f(y)) < DIST (f(x), f(z))
If distance between x and z is larger than the distance between x and y by more than β, then
the encryption of z will be further than the encryption of y from the encryption of x.

y y’

f(y)

x

z

Distance Comparison Preserving Encryption scheme [FGHO21]
DCPE algorithms 14



Search accuracy and TREC dataset

• Setup and query protocols: for given β

• Generate encryption key
• Encrypt dataset and queries set with β

• Run queries using conventional nearest-neighbor search (e.g., FAISS)
• Report search accuracy metrics

• TREC 2020 dataset is 8.8M documents embedded with fine-tuned BERT (768 dimensions)
Thanks Hamed Zamani for the dataset

• Query is a 768-dimensional embedding asking for k = 1 000 closest documents
TREC has a set of documents, a set of topics (questions), and relevance judgments (right answers)

• We report result set distance and difference, and ranking quality Recall, MRR and nDCG
Set distance and difference measure pure kNN accuracy
Recall, MRR and nDCG report ranking quality using relevance, common in information retrieval literature

15
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Recall, MRR and nDCG report ranking quality using relevance, common in information retrieval literature

15



Search accuracy results

Rank quality metrics, result set distance and difference for β ∈ {0, 1, . . . , 50}
16



Black-box inversion attack [SR20]

• MLmodel trains on document-embedding pairs and predicts a set of words from embedding
Model is an LSTM trained for 30 epochs
Original attack used BookCorpus [Zhu+15] dataset, but we will use TREC

• We evaluate the attack on encrypted embeddings
• We also add plaintext and random embeddings for the baselines
• Public model: adversary can use the embedding model, therefore, trains on plaintexts
• Private model: adversary can only use the entire system, therefore, trains on ciphertexts
• In both cases the model predicts the words from the encrypted embedding

• We measure precision, recall and F1 score along with the percent of stop-words
Stop-words are common words like “a”, “the”, pronouns, even punctuation and digits
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Attack performance results: public model (trained on plaintext)

18



Attack performance results: private model (trained on ciphertext)

Dataset Precision Recall F1 score % of non-stop-words
Encrypted with β = 0.0 38.84 27.64 32.30 2.31
Encrypted with β = 4.0 36.28 26.61 30.70 3.21
Random embeddings 36.07 26.61 30.62 0.00

19



Tradeoff between search accuracy and attack performance (public model, trained on plaintext)

20



CONCLUSIONS



Future work directions

• Focus on practicality and reproducibility!
• Property-preserving encryption is practical [BKR19; BKOZ22]
May not be ideally-secure, and does not have to be
Benchmark the scheme and quantify the leakage

• Hardware gets cheaper, consider “heavy” primitives and protocols [Bog+21]
ORAM, homomorphic encryption, garbled circuits, zero-knowledge proofs, etc
Performance may be acceptable with optimizations, specialized hardware and parallelization

• More database query types in outsourced model
JOIN, GROUP BY, AGGREGATE, custom predicates, etc
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APPENDIX



OPE / ORE schemes

Scheme Primitive usage Ciphertext size, Leakage
Encryption Comparison or state size (in addition to inherent total order)

BCLO [BCLO09] n HG none 2n ≈ Top half of the bits
CLWW [CLWW16] n PRF none 2n Most-significant differing bit

Lewi-Wu [LW16]
2n/d PRP

n
2d Hash n

d
(
λ+ n+ 2d+1)+ λ Most-significant differing block2nd

(2d + 1) PRF
n
d2d Hash

CLOZ [Cas+18]
n PRF

n2 PPH n · h Equality pattern of most-significant differing bitn PPH
1 PRP

FH-OPE [Ker15] 1 Traversal 3 Traversals 3 · n · N Insertion order

Table 1: [BKR19, Table 1]. Primitive usage by OPE / ORE schemes. Ordered by security rank — most secure below.
n is the input length in bits, d is a block size for Lewi-Wu [LW16] scheme, λ is a PRF output size, N is a total data
size, HG is a hyper-geometric distribution sampler, PPH is a property-preserving hash with h-bit outputs built with
bilinear maps and bolded are weak points of the schemes.

Back to ORE



Range query protocols

Protocol I/O requests Leakage Communication (result excluded)
Construction Query Construction Query

B+ tree with ORE logB
N
B logB

N
B + r

B Same as ORE 1 1
Kerschbaum [KT19] N

B log2
N
B + r

B Total order log2N log2N

POPE [RACY16] warm 1 logL
N
B + r

B Partial order 1 logLN
POPE [RACY16] cold N/B Fully hiding N

Logarithmic-BRC [Dem+16] — r Same as SSE — log2N

ORAM log2 NB log2
N
B
(
logB

N
B + r

B
) Fully hiding

log2 NB log2 NB(access pattern)

Table 2: [BKR19, Tables 2]. Performance of the range query protocols. Ordered by security rank — most secure
below. N is a total data size, B is an I/O page size, L is a POPE tree branching factor, r is the result size in records
and bolded are weak points of the protocols.

Back to ORE



One of the experimental results
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Access pattern and ORAM

Access pattern is a sequence of memory accesses y, where each access consists of the memory
location o, read r or write w operation and the data d to be written.
Oblivious RAM (ORAM) is a mechanism that hides the accesses pattern. More formally, ORAM is
a protocol between the client C (who accesses) and the server S (who stores), with a guarantee
that the view of the server is indistinguishable for any two sequences of the same lengths.

|y1| = |y2|
VIEWS(y1) c≈ VIEWS(y2)

ORAM protocol
1 : Client C Server S
2 : y = (r, i,⊥)|5i=1

3 : (client state) ORAM (y) (server state)

4 : {d1,d2,d3,d4,d5}

Square Root ORAM [Gol87], Hierarchical ORAM [GO96], Binary-Tree ORAM [SCSL11], Interleave
Buffer Shuffle Square Root ORAM [Xie+16], TP-ORAM [SSS12], PathORAM [Ste+13] and TaORAM
[Sah+16]. ORAM incurs at least logarithmic overhead in the number of stored records. [GO96]

Back to Epsolute



On impossibility of adaptive queries

Why is the query sequence q1, . . . ,qm ∈ Qm fixed?
• Suppose neighboring medical databases differ in one record with a rare diagnosis
“Alzheimer’s disease”

• A medical professional, who is a user (and not an adversary) queries the database
• for that diagnosis first
SELECT name FROM patients WHERE condition = 'ALZ'

• if there is a record, she queries the senior patients next
SELECT name FROM patients WHERE age >= 65

• otherwise she queries the general population, resulting in many more records
SELECT name FROM patients

• Adversary can know the answer to the first query by observing result size of the second
• Efficient system cannot return nearly the same number of records in both cases, thus, the
adversary can distinguish

Back to Epsolute
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Distance Comparison Preserving Encryption algorithms [FGHO21]

Algorithm 1 Distance Comparison Preserving Encryption, adapted from [FGHO21, Algorithm 2]
KEYGEN(1λ,S)
1 : s←$S
2 : k←$ {0, 1}λ

3 : return (s, k)

ENC((s, k), m⃗)
1 : n←$ {0, 1}λ

2 : coinsn||coinsu ← PRF (k,n)
3 : n⃗←$NORMAL (0, Id; coinsn)
4 : u←$UNIFORM (0, 1; coinsu)
5 : x← sβ

4 ·
d
√
u

6 : δ⃗ ← n⃗
∥n⃗∥
· x

7 : c⃗← s · m⃗+ δ⃗

8 : return c⃗

DEC((s, k), (⃗c,n))
1 : coinsn||coinsu ← PRF (k,n)
2 : n⃗←$NORMAL (0, Id; coinsn)
3 : u←$UNIFORM (0, 1; coinsu)
4 : x← sβ

4 ·
d
√
u

5 : δ⃗ ← n⃗
∥n⃗∥
· x

6 : m⃗← c⃗− δ⃗

s
7 : return m⃗

Back to Private kNN
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