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Abstract

Motivation: The complexity of protein-protein interactions (PPIs) is further compounded by the fact that
an average protein consists of two or more domains, structurally and evolutionary independent subunits.
Experimental studies have demonstrated that an interaction between a pair of proteins is not carried out
by all domains constituting each protein, but rather by a select subset. However, finding which domains
from each protein mediate the corresponding PPI is a challenging task.
Results: Here, we present Domain Interaction Statistical POTential (DISPOT), a simple knowledge-based
statistical potential that estimates the propensity of an interaction between a pair of protein domains,
given their SCOP family annotations. The statistical potential is derived based on the analysis of more
than 352,000 structurally resolved protein-protein interactions obtained from DOMMINO, a comprehensive
database on structurally resolved macromolecular interactions.
Availability and implementation: DISPOT is implemented in Python 2.7 and packaged as an open-source
tool. DISPOT is implemented in two modes, basic and auto-extraction. The source code for both modes
is available on GitHub: https://github.com/korkinlab/dispot and standalone docker images on DockerHub:
https://hub.docker.com/r/korkinlab/dispot. The web-server is freely available at http://dispot.korkinlab.org/.
Contact: korkin@korkinlab.org or onarykov@wpi.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Large-scale characterization of protein-protein interactions (PPIs)
using high-throughput interactomics approaches, such as yeast-two-
hybrid (Y2H) and tandem-affinity purification/mass spectrometry
(TAP/MS) approaches (Gavin et al., 2002; Rolland et al., 2014),
have provided the scientists with the new insights of the cell
functioning at the systems level and allowed to better understand the
molecular machinery underlying complex genetic disorders (Barabasi
and Oltvai, 2004; Cui et al., 2015; Mitra et al., 2013). Structural
studies of protein-protein interactions have revealed that a protein-
protein interaction is often carried out by smaller structural protein
subunits, protein domains (Ekman et al., 2005; Jin et al., 2009;
Vogel et al., 2004). Roughly two-thirds of eukaryotic and more

than one-third of prokaryotic proteins are estimated to be multi-
domain proteins (Ekman et al., 2005), and thus it is not surprising
that ≈ 46% of structurally resolved interactions are domain-domain
interactions (Kuang et al., 2016). A high-throughput breakdown of
the interactome at this, domain-level, resolution is a much more
experimentally challenging task, currently unfeasible at the whole-
system level and requiring computational methods to step in (Deng
et al., 2002; Finn et al., 2004; Ohue et al., 2014; Segura et al., 2015).

Here, we present a simple knowledge-based Domain Interaction
Statistical POTential (DISPOT), a tool that leverages the statistical
information on interactions shared between the homologous domains
from structurally defined domain families. The knowledge-based
potentials are extracted from our comprehensive database of
structurally resolved macromolecular interactions, DOMMINO (Kuang
et al., 2016). Our statistical potential can be integrated into protein-
protein interaction prediction methods that deal with multidomain
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proteins by ranking all possible pairwise combinations of domain
interactions between the two or more proteins.

2 Methodology
The development of DISPOT is driven by several observations. First,
an average interaction between a pair of proteins is not carried out
by all domains constituting each protein, but only by a select subset.
Indeed, each domain has its unique structure and biological function
and may not be designed to interact with a particular domain from
another protein (Banappagari et al., 2010; Shimizu et al., 2016).
Second, the domain-domain interactions often share homology: when
two homologous domains interact with their partners, these partners
frequently also share the homology with each other (Kuang et al.,
2016). Thus, one can introduce the domain-domain interaction
propensity in terms of the frequency of domain-domain interactions
between the two domain families. Lastly, the propensity of domain-
domain interaction is expected to vary across different families,
thus allowing to provide the finer resolution of the protein-protein
interaction network.

The quantification of the odds for a domain from one domain
family to interact with a domain from another family is defined in this
work as a knowledge-based statistical potential. Statistical potentials
are widely used in biophysical applications, often for characterizing
the residue contacts between the protein chains (Huang and Zou, 2008;
Krüger et al., 2014; Lu et al., 2003). One of the main applications of
the residue-level statistical potentials is in protein docking (Kozakov
et al., 2006). Our domain-domain statistical potential complements
the residue-level potentials by considering structural units from the
higher-level of protein structure hierarchy and requiring no structural
information about the protein domains. Specifically, the input for
DISPOT includes the protein sequences of the two proteins interacting
with each other.

First, the domain architecture of each protein is obtained. To
do so, a region of the protein sequence is annotated to a family
of homologous domains. For the definition of domain families, we
leverage the Structural Classification of Proteins (SCOP) family-level
classification (Andreeva et al., 2004). SCOP represents a structure-
based hierarchical classification of relationships between protein
domains or single-domain proteins with ‘family’ being the first level
of SCOP classification and ‘superfamily’ being the second level.
Protein domains from the same SCOP family are evolutionary closely
related and often share the same function. Since a protein with no
structural information cannot be directly annotated by SCOP, we
use SUPERFAMILY (Gough and Chothia, 2002), a Hidden Markov
Model (HMM) based approach that maps regions of a protein sequence
to one or several SCOP families or superfamilies. SUPERFAMILY
allows us to cover a substantial subset of known proteins: the HMM
coverage at the protein sequence and amino acid levels for the
UniProt database were reported at 64.73% and 58.78% respectively
in 2014 (Oates et al., 2014).

Second, for each pair of SCOP families we count a number of
non-redundant protein-protein interactions between the members of
these families that have been experimentally determined. Our source
of data is DOMMINO (Kuang et al., 2016, 2011) a comprehensive
database of structurally resolved macromolecular interactions. It
contains information about interactions between the protein domains,
interdomain linkers, terminal sequences, and protein peptides. In this
work, we use exclusively domain-domain interactions because the
data about this type of interactions is the most abundant. To remove
redundancy in the data, we use ASTRAL compendium (Brenner et al.,

2000) which is integrated into the SCOPe database (Fox et al., 2013).
From ASTRAL, we obtain a set of domains, where each domain
shares less than 95% sequence identity to any other domain in the set.
This set is then used to determine pairs of redundant domain-domain
interactions in the original DOMMINO dataset. Two domain-domain
interactions are determined as redundant if both corresponding pairs
of domains share 95% or more sequence identity. For each pair of
redundant domain-domain interactions, one interaction is randomly
removed. The process continues until no pair of redundant interactions
can be detected.

Third, for each domain family from each protein, a statistical
potential is calculated (Fig. 1A, 1B and Supplementary Materials
Figure S1). There are two types of statistical potentials introduced in
this work: (1) calculated for a domain from a specific domain family,
and (2) calculated for a pair of domains, one domain from each of
the two interacting proteins. The statistical potential Pi for a single
domain Di is calculated based on the total number of interactions
NDi

extracted from the non-redundant DOMMINO dataset for the
specific SCOP family this domain belongs to. The statistical potential
Pij for a pair of domains, Di and Dj , is calculated based on the total
number of occurrences Nij of the interactions between all domains
from the same two SCOP families as Di and Dj . Those numbers are
then transformed into probabilities as follows:

Pi =
1

Z1
ln

Npi

Nmean
Z1 =

∑
ln

Npk

Nmean

Pij =
1

Z2
ln

Mpij

Mmean
Z2 =

∑∑
ln
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where Nmean is an average number of interactions for a domain family
and Mmean is an average number of interactions for a pair of domain
families, both calculated from the non-redundant DOMMINO set.

DISPOT potentials are derived following a standard strategy for
calculating a statistical potential. The statistical potentials for the
atomic contact pairs are traditionally derived based on Boltzmann
relation (Huang and Zou, 2008):

Pij = −kBT ln
pij(r)

p∗ij

where k is the Boltzmann constant, T is the system’s temperature,
pij is an experimentally observed density of atom pairs from different
partners in a complex at distance and p∗ij is corresponding density
in the reference state. Since we do not work with the atomic-
level physical interactions, we replace the Boltzmann constant from
DISPOT equations and substitute temperature with the inverse of
normalization constant Z. In addition, pij and p∗ij are substituted with
the number of interactions between domains in DOMMINO database.

DISPOT can also provide integrated protein-level statistics. There
are multiple ways to combine the domain-level statistics into a protein-
level statistics. Two simple approaches to integrate domain-domain
interactions for a given protein-protein interaction in terms of a
standalone (single protein) and interaction (protein pair) potentials
are:

PMu = max
i

Pi and PMuv = max
i,j

Pij

respectively, where i and j correspond to the domains from
protein u and v. The rationale behind these definitions lies in the
assumption that a single strongest domain-domain interaction is
the one of the most important defining factor for the PPI. These
definitions of cumulative potentials were tested in terms of their
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Fig. 1. DISPOT statistical potential and its application. A. A crystal structure (left) of the protein complex between CNTO607 Fab human monoclonal antibody (yellow and red colors
denote two different chains) and interleukin-13 (IL-13), and the corresponding domain-domain interaction network (right). Shown in italics are SCOP Family IDs, and in bold are DISPOT
values for the corresponding interactions. Nodes colored with the same color belong to the same chain. Solid lines connecting nodes correspond to the physical interaction, while dashed
lines connect nodes corresponding to the protein domains that do not physically interact. B. A heatmap showing DISPOT values calculated for each pair of SCOP families, where only
potentials for pairs of SCOP families with 5 and more non-redundant interactions are plotted. The families are grouped based on the SCOP class (a-g) and are ordered within each fold
based on their IDs. C. A contact map showing the correlation between experimentally obtained human interactome HI-I-05 and DISPOT-based PPI prediction. A prediction that calls a PPI
correctly is shown in magenta, while PPIs that were missed are shown in cyan. D. Correlation calculated using R2 correlation coefficient between the hu.MAP interaction probability score
and DISPOT statistical potential for KEGG pathways (bottom) and GO clusters (top). E. Distribution of the protein-level DISPOT statistical potentials grouped by the number of SCOP
domains in a protein defined using SUPERFAMILY.
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ability to predict a PPI using several experimental sources. First,
we obtained the coverage landscape by the cumulative potentials
on the experimental protein-protein interactomes one obtained using
high-throughput yeast-two-hybrid screening (HI-I-05) (Rual et al.,
2005) and another one obtained using curated literature-based search
(LitBM-17, http://interactome.baderlab.org/data/LitBM-17.psi). As
expected, while this naïve method was able to recover 2,944 PPIs in
HI-I-05, it missed 1,188 PPIs even using a lenient threshold of -20 (Fig.
1C). Similarly, the cumulative potential was able to recover only 1,718
PPIs while 1,453 PPIs were not recovered (Supplementary Materials
Fig S1). We then apply the same pairwise cumulative potential to the
large-scale mass spectrometry study (Drew et al., 2017). Specifically
we study the correlation between the hu.MAP probability score and
cumulative pairwise score among KEGG pathways (Kanehisa and
Goto, 2000) and GO clusters produced by GeneSCF on 13,855 genes
with SUPERFAMILY annotation (Subhash and Kanduri, 2016) (Fig.
1D). While the number of highly correlated pairs was substantial, the
number of pairs with very little correlation still prevailed. Finally, the
analysis of the cumulative single potential for a protein showed that
it can obtain a diverse range of values and this property seems to be
independent of how many domains this protein has (Fig. 1E). Similar
behavior was observed when looking at the other basic cumulative
measures (Supplementary Materials, Figure S3).

Overall, we have analyzed and summarized interactions from
3,619 SCOP family pairs that were extracted from 352,199 PPIs. In
total, domains from 1,384 SCOP families were characterized that form
domain-domain interactions in 1,384 ‘homo-SCOP’ interaction pairs
(i.e., both domains are annotated with the same SCOP family) and
2,235 ‘hetero-SCOP’ pairs (Fig. 1B and Supplementary Materials Fig.
S1). The analysis of the calculated statistical potentials showed a wide
diversity across different families.

Finally, we would like to make a cautionary note of using the
developed tool. DISPOT was designed not as a PPI prediction tool,
but rather a tool that provides additional information on the likelihood
of specific domain-domain interactions in a given physical PPI. The
main reason is the fact that structural coverage of the protein-protein
interaction space is still far from being full, which leads to the presence
of a high number of false-negatives if one was to use DISPOT as
a stand-alone predictor. This intuition has been supported by our
evaluation of DISPOT against the two interactomics golden standards.
Thus, if a researcher wants to employ DISPOT in a PPI prediction
method, we recommend adding the DISPOT potentials as features to
the overall feature vector, that would include other parameters, such
as secondary structure, evolutionary conservation of the sequence,
predicted residue hydrophobicity, etc.

3 Implementation and usage
The basic mode is implemented in Python with the dependency on
packages pandas and numpy. It takes SCOP identifiers (IDs) for
either ‘family’ (fa) or ‘superfamily’ (sf) hierarchy levels as an input
and produces statistical potential for corresponding pair of domains.
Switching between the SCOP levels is implemented in command line
option sf. One of the possible input options is a command line option
domains, which provides a list of space-separated SCOP identifiers.
Based on this list, the program produces all possible unique pairwise
combinations of identifiers and the corresponding statistical potentials.
Option max produces the highest value of statistical potential for a
selected domain and a SCOP ID for the corresponding interaction
domain partner. Option output specifies the output file. If no file
path is specified, then program opens a console output prompting a

user to input the data. A detailed description of all acceptable input
formats and options is available in README file and help menu of
the main script dispot.py.

The auto-extraction version relies on the SUPERFAMILY models
and scripts and HMMER program for extracting the corresponding
SCOP IDs for either family or superfamily levels of hierarchy. The
Perl programming language interpreter is an additional dependency.
HMMER is compatible with the major linux distributions (it has been
tested on Ubuntu 16.04 and Alpine 3.7 with additional installation
of alpine-glibc). Windows users are advised to use the docker
image. The main script is dispot.py, and it includes several
options: fasta_folder — to specify a path to the folder with
FASTA files; output_folder — to specify a path to the results;
and max — to substitute the regular output of all pairwise statistical
potentials with the highest statistical potential for a given domain
family and a SCOP ID of the interaction partner on which this value is
achieved. Additional script batch_process.py provides almost
the same functionality, except it uses the default locations: ./data/
for the input and ./data/results/ for the output. For each
FASTA sequence, we extract a SUPERFAMILY-derived SCOP ID and
the location(s) of the corresponding domain on the protein sequence.
It is stored in the ./tmp/ folder and is available until the next run of
any of the scripts mentioned in this section. The data are stored in the
Python dictionary objects serialized by package pickle.

DISPOT has been also implemented as a web-server that carries the
full functionality of the developed methods and comes with a tutorial.
The web-server is freely available at http://dispot.korkinlab.org/.
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