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Abstract: I present a dynamic, voluntary contribution mechanism, public good game and derive
its potential outcomes. In each period, players endogenously determine contribution productivity
by engaging in costly investment. The level of contribution productivity carries from period to
period, creating a dynamic link between periods. The investment mimics investing in the stock
of technology for producing public goods such as national defense or a clean environment. After
investing, players decide how much of their remaining money to contribute to provision of the
public good, as in traditional public good games. I analyze three kinds of outcomes of the game:
the lowest payoff outcome, the Nash Equilibria, and socially optimal behavior. In the lowest
payoff outcome, all players receive payoffs of zero. Nash Equilibrium occurs when players invest
any amount and contribute all or nothing depending on the contribution productivity. Therefore,
there are infinitely many Nash Equilibria strategies. Finally, the socially optimal result occurs
when players invest everything in early periods, then at some point switch to contributing
everything. My goal is to discover and explain this point. I use mathematical analysis and
computer simulation to derive the results.
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1. INTRODUCTION

In this paper, I present a dynamic, voluntary contribution
mechanism, public good game and solve it for the lowest
payoff, Nash Equilibria and socially optimal outcomes.
In the lowest payoff scenario, a team gets the smallest
possible payoff. In equilibrium case, team players act in
their own interest in the light of what everyone else is
doing. While the lowest payoff and Nash Equilibria cases
are relatively straightforward, I concentrate on the socially
optimal outcome. In that case, players act in a team’s
interest to maximize team’s payoff. To derive the solution
for the socially optimal outcome, I build a mathematical
model, simplify it, then use computational methods and
regression analysis to derive a generic analytical solution.
Public goods are goods that are non-excludable and non-
rival in consumption. Non-excludability means that people
cannot be excluded or restricted from using the good. Non-
rivalry means that the use of the good by one individual
does not reduce its availability to others. One simple
example of a public good is a hurricane siren in a small
town. No one can be excluded from using the siren and
the use of the siren does not affect its availability to other
people. Another example of a public good is an open
sourced, open licensed software. It is almost impossible
to exclude people from using the software and the use of
the software by anyone does not affect its availability to
anyone else.

⋆ This is an exteneded version of the paper that has been published
in IPE Journal, Volume 26, 2017 (Bogatov, 2017).

The challenge associated with the voluntary provision of
public goods is the free rider problem. The problem occurs
when those who benefit from a public good or service do
not pay for it or do not contribute to it. This leads to the
non-production or under-provision of a good or service. As
long as this problem is not solved, the voluntary provision
of the public good may be ineffective and unsuccessful.
Consider the example of national defense. This good is
public since it is neither rival nor excludable. The free rider
problem may occur if a part of the society decides not to
pay for it. The good will remain public, but provision of
the good will be hurt due to the lack of contributions.
Moreover, the other people, those who pay, will have an
incentive to stop paying too as they might not want to pay
for “free riders”.
Consider an example of a public good that needs contri-
butions in order to operate. Wikipedia is an open platform
where people can post articles and other people can read
them. While the service is free, it does need resources,
technology and infrastructure to operate. Wikipedia needs
thousands of highly qualified encyclopedists, millions of
dollars and a team of software engineers to function. All
of these resources are provided voluntarily, thus, keeping
the good non-excludable.
It is important to solve or mitigate the problem of “free
riders” as it may have negative consequences. As more
people start to “free ride”, the incentive to pay for the good
decreases and even more people prefer not to contribute.
This self-reinforcing process will lead to overconsumption,
exhaustion or even destruction of the public good. At



certain point, the system or service will not have enough
resources to operate.
It is important to understand people’s behavior when they
decide whether or not to contribute to a public good. It is
always tempting to avoid contributing, thus, become a free
rider. To understand this behavior it is helpful to analyze
how the equilibrium may be achieved, what the lowest
possible payoff is, and how to achieve socially optimal
behavior. This analysis is a primary goal of the paper.
A number of experiments were conducted on the free rider
problem and public good provision. Marwell and Ames test
a strong free rider hypothesis by a series of 12 experiments
and find it not applicable to real world situations (Marwell
and Ames, 1981). They tested two versions of free rider
hypothesis — weak and strong — with experiments. “[T]he
‘weak’ version of the free-rider hypothesis, … states that
the voluntary provision of public goods by groups will
be sub-optimal and the ‘strong’ version, … argues that
(virtually) no public goods at all will be provided through
voluntary means.” They have found that strong version of
free rider hypothesis is not practically supported, while
the ‘weak’ version is (Marwell and Ames, 1981).
Isaac et al. attempt to reconcile divergent experimental
results of other papers — those which concluded that indi-
viduals always free ride a lot, free ride a little or never free
ride. They conclude that contribution decision depends
on the conditions of the experiment (Isaac et al., 1984).
Kagel et al. has a chapter in his textbook dedicated to
public good games experiments. He carefully describes how
such experiments need to be conducted, and how certain
aspects of experimental setup affect the end results (Kagel
et al., 1995). Finally, Chaudhuri surveys a large number
of papers on public good games in his work. He analyses
the effectiveness of monetary and non-monetary punish-
ments on sustaining cooperation in public good games.
He concludes that monetary punishments are generally
effective, however, there are certain caveats such as cost-
effectiveness of the punishment itself and the issue of “anti-
social” punishments. He concludes that there are other,
non-monetary, punitive measures such as expressions of
disapproval or social exclusion (Chaudhuri, 2011).
To analyze people’s decision-making regarding contribut-
ing to public goods, I have examined the game of (Ngo
and Smith, 2020). In the following sections I will describe
the game and its rules, and provide an example of one
period (round) in the game. I will consider three possible
outcomes — the lowest payoff, Nash Equilibria strategies
and socially optimal behavior, concentrating on the latter
one. While analyzing the socially optimal behavior, I will
construct a mathematical model first, solve it computa-
tionally and apply regression analysis tools to derive a
generic solution. I will then validate the solution math-
ematically. At the end, I will summarize the paper.

2. THE GAME

The game (Ngo and Smith, 2020) occurs among groups of
4 people and consists of 10 periods. Each period has two
stages: an investment stage and a contribution stage. At
the start of every period, all players receive endowments
of 10.

2.1 Investment Stage

This game incorporates endogenous determination of con-
tribution productivity and dynamic links between periods.
These two aspects are incorporated through the invest-
ment stage of each period where players have the oppor-
tunity to increase their contribution productivity from the
starting value of 0.30 (the low used by (Isaac and Walker,
1988)). First, players vote to determine the amount each
player in the group will invest in increasing contribution
productivity by choosing a whole number between zero
and ten, inclusive. A median voter rule is applied and the
group’s investment is the average of the two middle votes.
Then, contribution productivity increases by 0.01 multi-
plied by the investment. For example, in the first period
where contribution productivity equals 0.30, if players vote
1, 3, 5, and 6, the investment will be 4. Therefore, all four
group members invest 4 and have a remaining amount of 6
left after the investment. Contribution productivity then
equals 0.34. Players vote on an investment and invest in
contribution productivity every period, and the amount
builds throughout the ten periods.

Contribution productivity: Mt = Mt−1 + 0.01 · It
for t ∈ [1, 10]

M0 = 0.3

2.2 Contribution Stage

Following the investment stage is the contribution stage
where players decide how to allocate their remaining
money between private consumption and public good,
similar to a standard public good game. If the investment
had been 10, then the players must contribute zero to
the public good because they have no money left in the
period. The sum of the group members’ contributions is
multiplied by the new Mt each period and this amount, in
addition to any money the player has remaining after the
investment and contribution stage, is the player’s payoff for
that period (note that every player benefits from the sum
of the group contributions multiplied by the Mt regardless
of whether or not they contribute). Thus, each player’s
payoff for each period is:

πit = ω − It − cit +Mt

∑
cjt

where:
• πi is the individual’s payoff for the period,
• ω is the individual’s endowment,
• I is the investment for the period,
• ci is the individual’s contribution to the public good,
• M is the contribution productivity,
• cj is the other members’ contributions to the public

good, and
• t is the period.

See an example in Table 1 (M0 = 0.3).
In this case, the players’ endowments are 10. They collec-
tively decide to invest 3. Their multiplier gets increased
by 0.01 ·3 = 0.03 and is equal to 0.33. Players individually



Table 1. Example game

Players ω It Mt Cit Mt

∑
cjt πit

1 10 3 0.33 7 4.95 4.95
2 10 3 0.33 5 4.95 6.95
3 10 3 0.33 3 4.95 8.95
4 10 3 0.33 0 4.95 11.95

Lowest Possible

Outcome

Investment

Contribution

Payo�

1 2 3 4 5 6 7 8 9 10
0

2.5

5

7.5

10

Period of the game

Fig. 1. Lowest possible payoff

decide to contribute 7 (all that is left), 5, 3 and nothing.
The payoffs are 4.95, 6.95, 8.95 and 11.95.
The player 4 is a clear example of a free rider. This
player did not contribute anything relying on other’s
contributions, yet still got a benefit from public good.
Although this behavior is legitimate in the game, it is
clearly not socially optimal.

3. POTENTIAL OUTCOMES

In this section, I will analyze three potential outcomes of
the game. The most straightforward scenario is the one
where a team gets the lowest possible payoff. The next part
is a set of equilibrium scenarios in which each player acts in
his own interest in light of what everyone else is doing. In
this case, a player has some beliefs about other players’
strategies and acts accordingly to maximize his payoff.
Finally, I will analyze a scenario where players maximize
the team’s payoff. This is a socially optimal behavior where
players act in the team’s interests, not their own. In each
of these scenarios, I will identify the team’s strategy and
the payoff a team can get.

3.1 Lowest payoff outcome

The lowest payoff one could get is 0. This occurs if
the group invests everything in every period and never
contributes anything. Payoffs are 0 in every period and 0
at the end of 10 periods.
The reason this outcome is poor is because the investment
is never productively used. Investments are meaningless
without contributions, because the purpose of investments
is to amplify contributions to achieve higher returns. See
Figure 1.

3.2 Nash equilibrium

The formal definition of Nash Equilibrium as defined by
John Nash is the following:

Equilibrium point is n-tuple strategy such
that each player’s mixed strategy maximizes his
payoff if the strategies of the others are held
fixed. Thus, each player’s strategy is optimal
against those of the others. (Nash, 1951)

A less formal definition is given by Gibbons:
The collection of strategies in which each

player’s predicted strategy must be that player’s
best response to the predicted strategies of the
other players. (Gibbons, 1997)

My goal for the set of equilibrium scenarios is to find
each player’s strategy such that the player acts in his own
interests in light of what other players are doing. Since
the game is symmetric (each player starts the game in the
same conditions), the players will share the same strategy.

General strategy According to the definition of Nash
equilibrium, each player will aim to maximize his payoff.
During the contribution stage the optimal actions are:

cit


= 0 if Mt < 1

∈ [0, ω − It] if Mt = 1

= ω − It if Mt > 1

To paraphrase, in equilibrium, each player’s individual
strategy during the contribution stage is to contribute
nothing if the multiplier is below 1, contribute any amount
if the multiplier is equal to 1, or contribute everything the
player has if the multiplier is higher than 1. Please note
that when M = 1, any contribution will lead to the same
payoff.
These actions are optimal because when M < 1 a player’s
payoff will be less than the value he contributed, if no
one else contributed. The player will be worse off if he
contributes while others do not (or “free ride”). Therefore,
acting in his own interest, he does not contribute. When
M ≥ 1 a player’s payoff will be larger or equal to the value
he contributed, so he contributes all he has regardless of
other players’ actions.
During the investment stage, however, any decision will
satisfy equilibrium strategy since regardless of the voting,
all players make the same investment. For example, if
players vote 1, 3, 5 and 7, a median voter rule will produce
4 and all players will invest 4. Since all players make the
same investment, no player can be in a beneficial position
relative to other players at the end of the investment
stage. Therefore, any investment decision will lead to an
equilibrium. Since a player may make any investment,
there are an infinite 1 number of equilibrium solutions.

Special cases Although there are an infinite number of
solutions to the equilibrium scenarios, I identified three

1 If we restrict the smallest possible amount of investment — for
example to $0.01 — then there will be a finite number of solutions.
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Fig. 2. Highest possible equilibrium payoff
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Fig. 3. Equilibrium payoff with no investments and no
contributions

special cases. Notice that in equilibrium scenarios all
players get the same payoff.
The highest payoff a player can get is 120. This occurs if
players invest everything until the 8th period when M = 1.
Starting from the period 8 and until the end of the game,
players contribute their full endowments ω = 10. Each
period their payoff is 1 ·4 ·10 = 40 and at the end they get
3 · 40 = 120. See Figure 2.
If players decide to invest nothing in all periods, they will
keep their endowments and get 10 ·10 = 100. See Figure 3.
The lowest amount a player can get is 30. This occurs
if players build the multiplier equal to 1, and afterwards
do not contribute. It will take 7 periods to build such
multiplier. Players will keep their endowments last 3
periods and will get 3 · 10 = 30. See Figure 4.

{
It = 10 for t ∈ [1, 7]

cit = 0 for ∀i ∀t

Notice that an individual player cannot affect such sce-
nario — if the other three players vote the same amount
to invest, that amount gets invested.

3.3 Socially optimal behavior

The mathematical model To approach this problem I
have to build a mathematical model. Thinking of a single
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Fig. 4. Lowest possible equilibrium payoff
period I can define a function, f , of investment, I, and
contribution, C, that returns a payoff. Let me define this
function for the period after the tth period.

f(I, C) = [Mt · 4 · C] + [ω − C − I]

Mt = Mt−1 · (1 + 0.01 · I)
M0 = 0.3

Mt · 4 · C is payoff and ω − C − I is the amount left after
both stages.
Since every $1 contributed will give at least 0.3 · 4 = $1.2
back, keeping money in the contribution is not socially
optimal. A player will always be better off contributing
a unit than keeping it. Therefore, I can state a fact,
cosnsitent with a deeper analysis of the game by (Ngo and
Smith, 2020, Appendix):

The optimal result requires contributing all
that is left after the investment.

Now, the term ω−C− I equals 0, so I see that I = ω−C,
which means that I can eliminate one of the two variables
— C or I. Let me instead introduce a new variable, p, as
a fraction of endowment which player invests.
Now I = p · ω and C = (1 − p) · ω. Let me redefine the
function:

f(p) = Mt · 4 · ω · (1− p)

Mt = Mt−1 · (1 + 0.01 · ω · p)
M0 = 0.3

where:
• p is the proportion of investment,
• ω is the endowment (10), and
• Mt is the tth multiplier.

From now, let me solve it specifically for my case, when
endowment is 10.

f(p) = 40 ·Mt · (1− p)

Mt = Mt−1 · (1 +
p

10
)

M0 = 0.3

where:
• p is the proportion of investment, and
• Mt is the tth multiplier



Simulation Results

1 2 3 4 5 6 7 8 9 10 11
0

1.25

2.5

3.75

5
Payoff AmplifierPayoff Amplifier

Period of the game

P
a
y
o
ff
 A

m
p
lif

ie
r

Fig. 5. Function of payoff depending on time when a player
switches to contribution — f(p)

This is a recursive function that is difficult to solve ana-
lytically. One way to solve it anaytically is to reformulate
it without recursion, see Section 3.4.

The computational model Having the mathematical
model, I can make use of a computer to solve it nu-
merically, and then use regression analysis to derive the
analytical solution.
First, let me approximate how much time it would take
for the computer to execute this simulation.
If I ran the simulation for 10 periods with a step p that is at
least as small as 0.1, the time complexity of the algorithm
would be O (na), which is ≈ 1010 ·c computations. It would
take months to run the simulation on a usual PC, so I need
to improve the formula.
Let me then state the second fact, again cosnsitent with
a deeper analysis of the game by (Ngo and Smith, 2020,
Appendix):

The optimal solution requires that players
first only invest then only contribute. In other
words, p = 1.0 for some number of periods,
then p ∈ [0.0, 1.0] for one period, and finally
p = 0.0 for the rest of the game.

This finding is based on the fact that the value of an
investment declines and the value of a contribution grows
with time.
This constrint reduces the complexity of the algorithm to
linear — O(n).
Let me define two functions (see Appendix A) that com-
pute payoff for each possible p. This program runs the
game 10 periods for all possible values of p taking into ac-
count the second assumption. For each such run it returns
a payoff. The result of the computation is in Appendix B.
Although this simulation immediately gives me the value
of p where payoff is maximized, I am interested in a
generic solution. Let me plot the function. According to
Figure 5, the resulting function has a global maximum
and is probably quadratic with a < 0.

Regression Analysis The last step is to try to “estimate”
the formula for the data. I enter the data in the regression

tool 2 , give it a potential mathematical model (in my case
it is a quadratic formula ax2+ bx+ c) and run it. The tool
would estimate the formula with numeric coefficients and
error value. In this case, I got a quadratic formula with the
error value equal to 0, which means perfect fit. Now, let me
derive a generic formula so that it fits numeric one. This is
an artistic process — I play around with numbers trying to
compose variables such that they fit the quadratic formula.

f(x) = 400·[
−m · ω · x2 + (m · ω · T −M0) · x+M0 · T

]
(1)

xmax =
T

2
− M0

2 ·m · ω

fmax = f(xmax) = f

(
T

2
− M0

2 ·m · ω

)
where:

• m is the increase in multiplier 0.01,
• T is the number of periods, and
• x is the stage when players switch to contributing.

The number before the decimal point defines a pe-
riod. The number after the decimal point defines an
investment in that period.

The computation and regression analysis were conducted
for different values of m, ω, Mt, T and x to demonstrate
the robustness of the formula.
As a final step, with a generic formula I can compute the
actual outcome by using my specific initial values.

f(x) = −0.1x2 + 0.7x+ 3

xoptimal = 3.5

which indicates investment until the 4th period and in that
period investment of 0.5

foptimal = f(xoptimal) = 169

which implies the payoff of 169.
The maximum payoff for each player in the group of 4 is
169. To achieve this, the players must invest everything
until period 4, then invest half of their endowments, and
contribute everything afterwards. See Figure 6.

3.4 Analytical Solution

This section was inspired by the (Ngo and Smith, 2020)
and was added after the publication in IPE 2017.
If x is the number of full rounds of investment (the same
definition as in the erlier sections), then the payoff for each
round is 400 · (M0 −m · ω · x). Since there are T − x such
rounds, the final function becomes:
f(x) = 400 · (M0 −m · ω · x)(T − x)

= 400 ·
[
−m · ω · x2 + (m · ω · T −M0) · x+M0 · T

]
Note, that the analytically derived solution matches the
earlier results of regression analysis, see Equation (1).
2 http://www.xuru.org/rt/pr.asp

http://www.xuru.org/rt/pr.asp
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Fig. 6. Socially optimal outcome payoff
4. CONCLUSIONS

In this paper I have analyzed three potential outcomes of
the game. The lowest possible outcome occurs if players
only invest and never contribute. A player’s payoff is 0
since it is unreasonable to invest in contribution multiplier
and not to contribute. The equilibrium strategies occur if
all players contribute all or nothing depending on the con-
tribution productivity. Finally, I have analyzed the socially
optimal outcome. It occurs if players invest until a certain
period, then only contribute. I have analytically derived a
generic formula that produces the optimal strategy.
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Appendix A. COMPUTATIONAL SOLUTION CODE

import Foundation

func arrayToString(p : [Double]) -> String {
var result : String = "";

for e in p {
result += "\(e), ";

}

return result;
}

func compute(p : Double...) -> Double {
return compute(p);

}

func compute(p : [Double]) -> Double {
var result : Double = 0.0;
var m : Double = 0.3;

for var i = 0; i < p.count; i++ {
m += p[i] * 0.1;
result += m * (1 - p[i]);

}

return result;
}

func run(rounds : Int, step : Double) -> String {
var best : Double = 0.0;
var p = [Double](count: rounds, repeatedValue: 0.0);
var result : String = "";

for i in 0...(rounds-1) {

print("Changing \(i+1)-th proportion");

for p[i] = 0.0; p[i] < 1.0; p[i] += step {

let res = compute(p);
result += "\(Double(i) + p[i])\t\(res)\n";

if res > best {
best = res;

}

print("\tres: \(String(format: "%.3f", res));\
\tvalues: \(arrayToString(p))");

}

p[i] = 1.0;
}

print("Result");
print("\tBest value: \(best)");
print("\tMax payout: \(4 * best) USD");

return result;
}

run(10, step: 0.1);



Appendix B. COMPUTATIONAL RESULTS

Changing 1-th proportion
res: 3.000; values: 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.069; values: 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.136; values: 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.201; values: 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.264; values: 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.325; values: 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.384; values: 0.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.441; values: 0.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.496; values: 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.549; values: 0.9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.600; values: 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

Changing 2-th proportion
res: 3.600; values: 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.649; values: 1.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.696; values: 1.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.741; values: 1.0, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.784; values: 1.0, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.825; values: 1.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.864; values: 1.0, 0.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.901; values: 1.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.936; values: 1.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.969; values: 1.0, 0.9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.000; values: 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

Changing 3-th proportion
res: 4.000; values: 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.029; values: 1.0, 1.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.056; values: 1.0, 1.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.081; values: 1.0, 1.0, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.104; values: 1.0, 1.0, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.125; values: 1.0, 1.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.144; values: 1.0, 1.0, 0.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.161; values: 1.0, 1.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.176; values: 1.0, 1.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.189; values: 1.0, 1.0, 0.9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.200; values: 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

Changing 4-th proportion
res: 4.200; values: 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.209; values: 1.0, 1.0, 1.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.216; values: 1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.221; values: 1.0, 1.0, 1.0, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.224; values: 1.0, 1.0, 1.0, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.225; values: 1.0, 1.0, 1.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.224; values: 1.0, 1.0, 1.0, 0.6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.221; values: 1.0, 1.0, 1.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.216; values: 1.0, 1.0, 1.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.209; values: 1.0, 1.0, 1.0, 0.9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.200; values: 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

Changing 5-th proportion
res: 4.200; values: 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.189; values: 1.0, 1.0, 1.0, 1.0, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.176; values: 1.0, 1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.161; values: 1.0, 1.0, 1.0, 1.0, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.144; values: 1.0, 1.0, 1.0, 1.0, 0.4, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.125; values: 1.0, 1.0, 1.0, 1.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.104; values: 1.0, 1.0, 1.0, 1.0, 0.6, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.081; values: 1.0, 1.0, 1.0, 1.0, 0.7, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.056; values: 1.0, 1.0, 1.0, 1.0, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.029; values: 1.0, 1.0, 1.0, 1.0, 0.9, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 4.000; values: 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,

Changing 6-th proportion



res: 4.000; values: 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
res: 3.969; values: 1.0, 1.0, 1.0, 1.0, 1.0, 0.1, 0.0, 0.0, 0.0, 0.0,
res: 3.936; values: 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0, 0.0,
res: 3.901; values: 1.0, 1.0, 1.0, 1.0, 1.0, 0.3, 0.0, 0.0, 0.0, 0.0,
res: 3.864; values: 1.0, 1.0, 1.0, 1.0, 1.0, 0.4, 0.0, 0.0, 0.0, 0.0,
res: 3.825; values: 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.0, 0.0, 0.0, 0.0,
res: 3.784; values: 1.0, 1.0, 1.0, 1.0, 1.0, 0.6, 0.0, 0.0, 0.0, 0.0,
res: 3.741; values: 1.0, 1.0, 1.0, 1.0, 1.0, 0.7, 0.0, 0.0, 0.0, 0.0,
res: 3.696; values: 1.0, 1.0, 1.0, 1.0, 1.0, 0.8, 0.0, 0.0, 0.0, 0.0,
res: 3.649; values: 1.0, 1.0, 1.0, 1.0, 1.0, 0.9, 0.0, 0.0, 0.0, 0.0,
res: 3.600; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,

Changing 7-th proportion
res: 3.600; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,
res: 3.549; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.1, 0.0, 0.0, 0.0,
res: 3.496; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0,
res: 3.441; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.3, 0.0, 0.0, 0.0,
res: 3.384; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.4, 0.0, 0.0, 0.0,
res: 3.325; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.0, 0.0, 0.0,
res: 3.264; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.6, 0.0, 0.0, 0.0,
res: 3.201; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.7, 0.0, 0.0, 0.0,
res: 3.136; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8, 0.0, 0.0, 0.0,
res: 3.069; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9, 0.0, 0.0, 0.0,
res: 3.000; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0,

Changing 8-th proportion
res: 3.000; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0,
res: 2.929; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.1, 0.0, 0.0,
res: 2.856; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.0, 0.0,
res: 2.781; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.3, 0.0, 0.0,
res: 2.704; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.4, 0.0, 0.0,
res: 2.625; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.0, 0.0,
res: 2.544; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.6, 0.0, 0.0,
res: 2.461; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.7, 0.0, 0.0,
res: 2.376; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8, 0.0, 0.0,
res: 2.289; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9, 0.0, 0.0,
res: 2.200; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0,

Changing 9-th proportion
res: 2.200; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0,
res: 2.109; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.1, 0.0,
res: 2.016; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.0,
res: 1.921; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.3, 0.0,
res: 1.824; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.4, 0.0,
res: 1.725; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.0,
res: 1.624; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.6, 0.0,
res: 1.521; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.7, 0.0,
res: 1.416; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8, 0.0,
res: 1.309; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9, 0.0,
res: 1.200; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0,

Changing 10-th proportion
res: 1.200; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0,
res: 1.089; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.1,
res: 0.976; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2,
res: 0.861; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.3,
res: 0.744; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.4,
res: 0.625; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5,
res: 0.504; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.6,
res: 0.381; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.7,
res: 0.256; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.8,
res: 0.129; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9,
res: 0.000; values: 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

Result
Best value: 4.225
Achieved at p = 3.5



which defines 4-th round and investment of 0.5
Max payout: 16.9 USD
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