Analysis of a Dynamic Voluntary Contribution Mechanism Public Good Game

23rd IPE Conference

Dmytro Bogatov and Jacqueline Ngo

Worcester Polytechnic Institute

February 26, 2016
Table of Contents

1. Game Description
2. Lowest payoff outcome
3. Nash equilibrium
4. Socially optimal behavior
 - The mathematical model
 - The computational model
 - Regression Analysis
Why Solving the game is important?

To know optimal balance between investing in productive capacity and contributing to provision.

Examples of public goods

- Good environment
- National Defense
The Game

- 4 people in group for 10 periods
- Each period has two stages:
 1. investment stage
 2. contribution stage
- Endowments of 10 for each player in each period
Investment Stage

- Players can increase their contribution productivity from the starting value of 0.30.
- Vote (median rule) to determine the amount each player in the group will invest in increasing contribution productivity.
- Contribution productivity increases by 0.01 multiplied by the investment.

Contribution productivity \(M_t = M_{t-1} + 0.01 \cdot I_t \)

for \(t = [1..10] \)

\(M_0 = 0.3 \)
Contribution Stage

Players decide how to allocate their remaining money between private consumption and public good.

Payoff:

\[\pi_{it} = \omega - I_t - c_{it} + M_t \sum c_{jt} \]
Example ($M_0 = 0.3$):

Table

<table>
<thead>
<tr>
<th>Players</th>
<th>ω</th>
<th>I_t</th>
<th>M_t</th>
<th>C_{it}</th>
<th>$M_t \sum c_{jt}$</th>
<th>π_{it}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>3</td>
<td>0.33</td>
<td>7</td>
<td>4.95</td>
<td>4.95</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>6.95</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
<td>3</td>
<td>4.95</td>
<td>8.95</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>11.95</td>
</tr>
</tbody>
</table>
Potential Outcomes

- **The Lowest Payoff outcome.** How would the players act to get the lowest possible payoffs? What are the lowest possible payoffs?

- **The Nash Equilibrium.** What would happen if each player acted in his own interest?

- **The Socially Optimal outcome.** How should the players act so that the sum of payoffs is maximized? What is this sum of payoffs?
Lowest payoff outcome

- Lowest possible payoff is 0
- Occurs if the group invests everything in every period and never contributes anything

Payoffs are 0 in every period and 0 at the end of 10 periods.

\[\pi_{it} = \omega - I_t - c_{it} + M_t \sum c_{jt} \]
Nash equilibrium

- Think of the last period
- Player maximizes his payoff. If he contributes anything he reduces his payoff. Decides not to contribute.
- All players follow the same strategy
- If nobody contributes, then nobody invests
Nash equilibrium

- Everyone is left with his endowment
- Occurs for all previous periods up to the first one
- All players follow the same strategy
- Nash equilibrium is for everyone to keep his money

Each person’s payoff is $10 \cdot 10 = 100$.
The mathematical model

\[f(I, C) = [\omega - C - I] + [4 \cdot M_t \cdot C] \]

\[M_t = M_{t-1} \cdot (1 + 0.01 \cdot I) \]

\[M_0 = 0.3 \]

4 \cdot M_t \cdot C is payoff and \(\omega - C - I \) is the amount left after both stages.
Assumption

Assumption: the optimal result requires contributing all that is left after the investment. We can eliminate one of the two variables - C or I.

Now $I = p \cdot \omega$ and $C = (1 - p) \cdot \omega$.

\[
\begin{align*}
 f(p) &= 4 \cdot M_t \cdot \omega \cdot (1 - p) \\
 M_t &= M_{t-1} \cdot (1 + 0.01 \cdot \omega \cdot p) \\
 M_0 &= 0.3
\end{align*}
\]

where:

- p is the *proportion* of investment
- ω is the endowment (10)
- M_t is the t_{th} multiplier
Final model

From now, let us solve it specifically for our case, when endowment is 10.

\[f(p) = 40 \cdot M_t \cdot (1 - p) \]

\[M_t = M_{t-1} \cdot \left(1 + \frac{p}{10}\right) \]

\[M_0 = 0.3 \]
Approximation

- Ran the simulation for 10 periods with step 0.1
- Time complexity of the algorithm would be $O(n^a)$

Assumption: The optimal solution requires that players first only invest then only contribute.
Graphical representation of computational result

Plotted by https://plot.ly/plot
Regression analysis result

\[f(x) = 400 \cdot \left[-m \cdot \omega \cdot x^2 + (m \cdot \omega \cdot T - M_0) \cdot x + M_0 \cdot T \right] \]

\[x_{\text{max}} = \frac{T}{2} - \frac{M_0}{2 \cdot m \cdot \omega} \]

\[f_{\text{max}} = f(x_{\text{max}}) = f \left(\frac{T}{2} - \frac{M_0}{2 \cdot m \cdot \omega} \right) \]

where:

- \(m \) is the increase in contribution productivity (0.01)
- \(T \) is the number of periods
- \(x \) is the stage when players switch to contributing. The number before the decimal point defines a period. The number after the decimal point defines an investment in that period.
In our specific case

\[f(x) = -0.1x^2 + 0.7x + 3 \]

\[x_{\text{optimal}} = 3.5 \]

which indicates investment until the 4\text{th} period and in that period investment of 5

\[f_{\text{optimal}} = f(x_{\text{optimal}}) = 169 \]

which implies the payoff of 169.
Thank you!

Questions?
Analysis of a Dynamic Voluntary Contribution Mechanism Public Good Game

23rd IPE Conference

Dmytro Bogatov and Jacqueline Ngo

Worcester Polytechnic Institute

February 26, 2016