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Motivation

• With vast amounts of data, organizations choose to use cloud solutions
• These solutions need to be both efficient and secure
• Recent attacks on access pattern (AP) [8, 9, 16, 18, 19, 21, 26, 29, 31] and communication
volume (CV) [21, 30, 31, 36, 40]

• Existing solutions may be insufficient:
• protection against snapshot adversary does not account for AP and CV
CryptDB [6], Arx [37], Seabed [22] and SisoSPIR [20]

• enclaves like SGX are still uncommon and limited in memory
Cipherbase [11], HardIDX [25], StealthDB [38], EnclaveDB [33], ObliDB [35], Opaque [27] and Oblix [32]

• other solutions protect either from one of AP or CV, or use linear scan and full padding
Cryptϵ [41], Shrinkwrap [28], SEAL [39] and PINED-RQ [34]

• Epsolute: most secure and practical range- and point-query engine in the outsourced
database model, that protects both AP and CV using Differential Privacy, while not rely-
ing on TEE, linear scan or full padding
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Outsourced Database System

Database
A database is modeled as a set of tuples consisting of record payload, record unique ID, and
record search key (i.e., the indexed attribute).
Query
A query is a predicate that is evaluated on a search key. Evaluating a query on a database
results in all records whose search keys satisfy that query.
Protocols
User U and server S are stateful. In setup, U receives a (plaintext) database, S has no input. S
outputs data structure DS , U has no output. In query, U receives a query, S receives the data
structure DS . U outputs the result of evaluating the query on a database, S has no output.
Correctness
For correctness, we require that for any database and query, it holds that running the protocols
yields for U the correct output with overwhelming probability.
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Differential Privacy and Sanitization

Definition (Differential Privacy, adapted from [3, 4])
A randomized algorithm A is (ϵ, δ)-differentially private if for all D1 ∼ D2 ∈ X n, and for all
subsets O of the output space of A,

Pr [A (D1) ∈ O] ≤ exp(ϵ) · Pr [A (D2) ∈ O] + δ .

Theorem (Laplace Perturbation Algorithm (LPA), adapted Theorem 1 from [3])

An algorithm A that adds independently generated noise from a zero-mean Laplace distribution
with scale λ = sensitivity of query

ϵ to each coordinate of a query result, satisfies ϵ-differential privacy.
Definition (Differentially Private Sanitizer, informal)
An (ϵ, δ, α, β)-differentially private sanitizer is a pair of algorithms (A,B) such that:
• A is (ϵ, δ)-differentially private, and
• on input a dataset, A outputs a data structure DS such that with probability 1 − β for all
queries, B (DS,q) is within α of a real query result.
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Differential Privacy and Sanitization

Answering point and range queries with differential privacy. N is a domain size. Omitting the dependency on ϵ

and δ, shown are values of α.

Point Query Range Query
Pure DP Θ(logN) [15] Θ(logN) [5, 13]
Approximate DP O(1) [12] O

(
2log∗ N

)
[12, 17]

Theorem (Composition)

Let A1, . . . ,Ar be mechanisms, such that each Ai provides ϵi-differential privacy. Let D1, . . . ,Dr
be pairwise non-disjoint (resp., disjoint) datasets. Let A be another mechanism that executes
A1(D1), . . . ,Ar(Dr) using independent randomness for each Ai, and returns their outputs. Then,
mechanism A is

(∑r
i=1 ϵi

)
-differentially private (resp.,

(
maxri=1 ϵi

)
-differentially private).
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Access pattern and ORAM

Access pattern is a sequence of memory accesses y, where each access consists of the memory
location o, read r or write w operation and the data d to be written.
Oblivious RAM (ORAM) is a mechanism that hides the accesses pattern. ORAM is a protocol
between C (who accesses) and S (who stores), with a guarantee that the view of the server is
indistinguishable for any two sequences of the same lengths.

|y1| = |y2|
VIEWS(y1) c≈ VIEWS(y2)

ORAM protocol
1 : Client C Server S
2 : y = (r, i,⊥)|5i=1

3 : (client state) ORAM (y) (server state)

4 : {d1,d2,d3,d4,d5}

For example: Square Root ORAM [1], Hierarchical ORAM [2], Binary-Tree ORAM [7], Interleave
Buffer Shuffle Square Root ORAM [24], TP-ORAM [10], Path-ORAM [14] and TaORAM [23]. ORAM
incurs at least logarithmic overhead in the number of stored records. [2]

5



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University
CONTRIBUTIONS: MODEL,
SINGLE-THREADED AND PARALLEL
EPSOLUTE



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

Differentially Private Outsourced Database System

Definition (Computationally Differentially Private Outsourced Database System (CDP-ODB))
We say that an outsourced database system Π is (ϵ, δ)-computationally differentially private
(a.k.a. CDP-ODB) if for every polynomial time distinguishing adversary A, for every neighboring
databases D ∼ D′, and for every query sequence q1, . . . ,qm ∈ Qm where m = poly(λ),

Pr [A (1λ, VIEWΠ,S (D,q1, . . . ,qm)
)
= 1] ≤
exp ϵ · Pr

[
A
(
1λ, VIEWΠ,S (D′,q1, . . . ,qm)

)
= 1
]
+ δ + negl(λ) ,

the probability is over the randomness of the distinguishing adversary A and the protocol Π.
Note:
• Entire view of the adversary is DP-protected
• Implies protection against communication volume and access pattern leakages
• Query sequence q1, . . . ,qm ∈ Qm is fixed
• negl(λ) accounts for the computational (as opposed to theoretical) DP definition
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On impossibility of adaptive queries

Example
• Suppose neighboring medical databases differ in one record with a rare diagnosis
“Alzheimer’s disease”

• A medical professional queries the database
• for that diagnosis first (point query)
SELECT name FROM patients WHERE condition = 'ALZ'

• if there is a record, she queries the senior patients next (range query)
SELECT name FROM patients WHERE age >= 65

• otherwise she queries the general population,resulting in more records
SELECT name FROM patients

• Efficient system cannot return nearly the same number of records in both cases, thus, the
adversary can distinguish

7
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Single-Threaded Epsolute

Server User

User
ORAM

ServerStorage

Searchkey RecordID
Salary$40K IDs 56,46,89
Salary$50K IDs 85,38,63

... ...
Recordindex

Query:
“Salaries $40K–$50K"

ORAM read requests

ClientDPhisotgram
(point queries)

DPtree(rangequeries)

noise

noise

• In setup protocol, lookup index over the records is stored on the client U and all records
are stored on the server S via ORAM (record ID is the ORAM location).

• In query protocol, the ORAM locations are retrieved from the index, the total (real + noise)
records number is fetched from the sanitized DS , records are retrieved via ORAM.

• Refer to the full paper [42] for formal description and security proof.
8
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Sanitizers for point and range queries

Point queries
• Use the LPA method as the sanitizer
to ensure pure differential privacy

• For every histogram bin, draw from
LAPLACE

(
α, 1ϵ
)

Range queries
• Use the aggregate tree method as the sanitizer, a
k-ary tree over domain (k = 16)
• a leaf node holds the number of records falling
into each bin plus some noise;

• a parent node holds sum of the leaf values in
the range covered by this node, plus noise;

• sanitizer’s output is the best-range cover;
• For every node, draw from LAPLACE

(
α, logk Nϵ

)
Set α to the smallest such that if drawn N times, values are positive with probability 1− β.

α =

⌈
−
ln
(2− 2 N

√1− β
)

ϵ

⌉
α =

⌈
− ln (2− 2

nodes√1− β) · logkN
ϵ

⌉
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Overhead and supporting multiple attributes

Storage efficiency is defined as the sum of the bit-lengths of the records in a database relative
to the bit-length of a corresponding encrypted database. Communication efficiency is defined
as the sum of the lengths of the records in bits whose search keys satisfy the query relative to
the actual number of bits sent back as the result of a query. Efficiency is defined as (a1,a2),
where a1 is a multiplicative term and a2 is the additive one.

Epsolute’s storage efficiency is (O(1), 0). Communication efficiencies for different query and DP types are shown.

Point Query Range Query
Pure DP (O(log n),O(logN log n)) (O(log n),O(logN log n))
Approximate DP (O(log n),O(log n))

(
O(log n),O

(
2log∗ N log n

))
Multiple indexed attributes
• Naïve way is to duplicate the entire stack of states of U and S and use one per attribute
• We can do better: ORAM state (the largest part) is shared, index and DS per attribute
• Need to split privacy budget ϵ among attributes (Composition Theorem)

10
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Parallel Epsolute: the choice of separate vs shared DS

• Split U and S state into m ORAMs, run as separate machines
• Partition records randomly (by ID) into m partitions, generate m inverted indexes

No-γ method: DS per ORAM
• Composition of disjoint datasets: take max ϵ
• Each ORAM replies with (1 + γ)k0m records,
where k0 is a required number of records

• To bound probability to β, use γ =
√
−3m log β

k0

γ-method: shared DS
• Same number of records per ORAM
• Use γ as in no-γ method, except
• k0 ← k0 + logN

ϵ for point queries
• k0 ← k0 + log1.5 N

ϵ for range queries

Point Query Range Query

no-γ-method
(
O
((
1+

√
−3m log β

k0

)
log n

m

)
,O
(
logN
ϵ m log n

)) (
O
((
1+

√
−3m log β

k0

)
log n

m

)
,O
(
log1.5 N

ϵ m log n
))

γ-method
(
O
((

1+
√

−3m log β

k0+ log N
ϵ

)
log n

m

(
1+ logN

ϵ

))
, 0
) (

O

((
1+

√
−3m log β

k0+ log1.5 N
ϵ

)
log n

m

(
1+ log1.5 N

ϵ

))
, 0
)

Communication efficiencies for different query types and methods.
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• Partition records randomly (by ID) into m partitions, generate m inverted indexes

No-γ method: DS per ORAM
• Composition of disjoint datasets: take max ϵ
• Each ORAM replies with (1 + γ)k0m records,
where k0 is a required number of records

• To bound probability to β, use γ =
√
−3m log β

k0

γ-method: shared DS
• Same number of records per ORAM
• Use γ as in no-γ method, except
• k0 ← k0 + logN

ϵ for point queries
• k0 ← k0 + log1.5 N

ϵ for range queries
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, 0
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Communication efficiencies for different query types and methods.
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Parallel Epsolute diagram (with improvements)
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Experiments setup

• Implemented in C++, PathORAM and B+ tree are modules, OpenSSL for crypto
• Run on GCP in different regions, 8 storage VMs, 8 ORAM VMs, one client
• Two real datasets (salaries) and one synthetic (uniform) dataset of sizes 100K, 1M and 10M
• Default setting
• ϵ = ln 2 and β = 2−20
• 1M uniformly sampled 4 KiB records
• selectivity 0.5%
• γ-method

• Mechanisms (besides Epsolute)
• MySQL and PostgreSQL
• Linear Scan (download everything every query)
• Shrinkwrap [28] (adapted range queries from their source code)
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Question 1: against RDBMS, Linear Scan and Shrinkwrap

How practical is our system compared to the most efficient and most private real-world
solutions?

Three orders of magnitude faster than Shrinkwrap [28], 18 times faster than the linear scan
and only 4–8 times slower than a conventional database.
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Question 2: storage

How practical is the storage overhead?

n
Record 1 KiB 4 KiB 16 KiB

105 400 KiB 400B 400 KiB 102 KiB 400 KiB 1.6MB
396MB 4.6MB 1.5 GB 14MB 6.2 GB 51MB

106 3.9MB 400B 3.9MB 102 KiB 3.9MB 1.6MB
3.2 GB 15MB 12 GB 25MB 48GB 62MB

107 40MB 400B 40MB 102 KiB 40MB 1.6MB
24GB 99MB 96GB 109MB 384GB 146MB

n
N

100 104 106

Left top: index I (B+ tree), right top: aggregate tree DS , right bottom: ORAM U state and left bottom (bold): ORAM
S state. Italic values are estimated. S to U storage size ratio is 85, 414 and over 2 000.
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Question 3: varying parameters

How different inputs and parameters of the system affect its performance?

ϵ strictly contributes to the amount of noise, which grows exponentially as ϵ decreases.
Overhead expectedly grows with the result size.
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Question 4: scalability

How well does the system scale?

The γ-method provides substantially better performance and storage efficiency, and when
using this method the system scales linearly with the number of ORAMs.
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Question 5: multiple attributes

What is the impact of supporting multiple attributes?

The overhead increases only slightly due to a lower privacy budget.
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