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ABSTRACT
As organizations struggle with processing vast amounts of informa-

tion, outsourcing sensitive data to third parties becomes a necessity.

To protect the data, various cryptographic techniques are used in

outsourced database systems to ensure data privacy, while allowing

efficient querying. A rich collection of attacks on such systems

has emerged. Even with strong cryptography, just communication

volume or access pattern is enough for an adversary to succeed.

In this work we present a model for differentially private out-

sourced database system and a concrete construction, Epsolute, that
provably conceals the aforementioned leakages, while remaining

efficient and scalable. In our solution, differential privacy is pre-

served at the record level even against an untrusted server that

controls data and queries. Epsolute combines Oblivious RAM and

differentially private sanitizers to create a generic and efficient

construction.

We go further and present a set of improvements to bring the

solution to efficiency and practicality necessary for real-world adop-

tion.We describe the way to parallelize the operations, minimize the

amount of noise, and reduce the number of network requests, while

preserving the privacy guarantees. We have run an extensive set of

experiments, dozens of servers processing up to 10 million records,

and compiled a detailed result analysis proving the efficiency and

scalability of our solution. While providing strong security and

privacy guarantees we are less than an order of magnitude slower

than range query execution of a non-secure plain-text optimized

RDBMS like MySQL and PostgreSQL.

CCS CONCEPTS
• Security andprivacy→Database and storage security;Man-
agement and querying of encrypted data.
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1 INTRODUCTION
Secure outsourced database systems aim at helping organizations

outsource their data to untrusted third parties, without compro-

mising data confidentiality or query efficiency. The main idea

is to encrypt the data records before uploading them to an un-

trusted server along with an index data structure that governs

which encrypted records to retrieve for each query. While strong

cryptographic tools can be used for this task, existing implemen-

tations such as CryptDB [56], Cipherbase [2], StealthDB [70] and

TrustedDB [3] try to optimize performance but do not provide

strong security guarantees when answering queries. Indeed, a se-

ries of works [9, 17, 34, 37, 40, 41, 43, 45, 51] demonstrate that these

systems are vulnerable to a variety of reconstruction attacks. That

is, an adversary can fully reconstruct the distribution of the records

over the domain of the indexed attribute. This weakness is promi-

nently due to the access pattern leakage: the adversary can tell if

the same encrypted record is returned on different queries.

More recently, [33, 35, 43–45] showed that reconstruction attacks

are possible even if the systems employ heavyweight cryptographic

techniques that hide the access patterns, such as homomorphic en-

cryption [30, 69] or Oblivious RAM (ORAM) [31, 32], because they

leak the size of the result set of a query to the server (this is referred

to as communication volume leakage). Thus, even some recent sys-

tems that provide stronger security guarantees like ObliDB [28],

Opaque [75] and Oblix [50] are susceptible to these attacks. This

also means that no outsourced database system can be both opti-

mally efficient and privacy-preserving: secure outsourced database

systems should not return the exact number of records required to

answer a query.

We take the next step towards designing secure outsourced data-

base systems by presenting novel constructions that strike a prov-

able balance between efficiency and privacy. First, to combat the

https://doi.org/10.1145/3460120.3484786
https://doi.org/10.1145/3460120.3484786
https://doi.org/10.1145/3460120.3484786


CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill

access pattern leakage, we integrate a layer of ORAM storage in our

construction. Then, we bound the communication volume leakage

by utilizing the notion of differential privacy (DP) [24]. Specifically,

instead of returning the exact number of records per query, we

only reveal perturbed query answer sizes by adding random en-

crypted records to the result so that the communication volume

leakage is bounded. Our construction guarantees privacy of any

single record in the database which is necessary in datasets with

stringent privacy requirements. In a medical HIPAA-compliant set-

ting, for example, disclosing that a patient exists in a database with

a rare diagnosis correlating with age may be enough to reveal a

particular individual.

The resulting mechanism achieves the required level of privacy,

but implemented naïvely the construction is prohibitively slow. We

make the solution practical by limiting the amount of noise and

the number of network roundtrips while preserving the privacy

guarantees. We go further and present a way to parallelize the

construction, which requires adapting noise-generation algorithms

to maintain differential privacy requirements.

Using our system, we have run an extensive set of experiments

over cloud machines, utilizing large datasets — that range up to

10 million records — and queries of different sizes, and we report

our experimental results on efficiency and scalability. We compare

against best possible solutions in terms of efficiency (conventional

non-secure outsourced database systems on unencrypted data) and

against an approach that provides optimal security (retrieves the

full table from the cloud or runs the entire query obliviously with

maximal padding). We report that our solution is very competitive

against both baselines. Our performance is comparable to that of

unsecured plain-text optimized database systems (like MySQL and

PostgreSQL): while providing strong security and privacy guaran-

tees, we are only 4 to 8 times slower in a typical setting. Compared

with the optimally secure solution, a linear scan (downloading all

the records), we are 18 times faster in a typical setting and even

faster as database sizes scale up.

To summarize, our contributions in this work are as follows:

• We present a new model for a differentially private out-

sourced database system, CDP-ODB, its security definition,

query types, and efficiency measures. In our model, the ad-

versarial honest-but-curious server cannot see the record

values, access patterns, or exact communication volume.

• We describe a novel construction, Epsolute, that satisfies
the proposed security definition, and provide detailed algo-

rithms for both range and point query types. In particular,

to conceal the access pattern and communication volume

leakages, we provide a secure storage construction, utilizing

a combination of Oblivious RAM [31, 32] and differentially

private sanitization [10]. Towards this, we maintain an index

structure to know how many and which objects we need to

retrieve. This index can be stored locally for better efficiency

(in all our experiments this is the case), but crucially, it can

also be outsourced to the adversarial server and retrieved

on-the-fly for each query.

• We improve our generic construction to enable paralleliza-

tion within a query. The core idea is to split the storage

among multiple ORAMs, but this requires tailoring the over-

head required for differential privacy proportionally to the

number of ORAMs, in order to ensure privacy. We present

practical improvements and optimization techniques that

dramatically reduce the amount of fetched noise and the

number of network roundtrips.

• Finally, we provide and open-source a high-quality C++ im-

plementation of our system. We have run an extensive set

of experiments on both synthetic and real datasets to em-

pirically assess the efficiency of our construction and the

impact of our improvements. We compare our solutions to

the naïve approach (linear scan downloading all data every

query), oblivious processing and maximal padding solution

(Shrinkwrap [5]), and to a non-secure regular RDBMS (Post-

greSQL and MySQL), and we show that our system is very

competitive.

1.1 Related Work
We group the related secure databases, engines, and indices into

three categories (i) systems that are oblivious or volume-hiding and

do not require trusted execution environment (TEE), (ii) construc-

tions that rely on TEE (usually, Intel SGX), (iii) solutions that use

property-preserving or semantically secure encryption and target

primarily a snapshot adversary. We claim that Epsolute is the most

secure and practical range- and point-query engine in the outsourced

database model, that protects both access pattern (AP) and communi-

cation volume (CV) using Differential Privacy, while not relying on

TEE, linear scan or padding result size to the maximum.

Obliviousness and volume-hiding without enclave. This category

is the most relevant to Epsolute, wherein the systems provide either

or both AP and CV protection without relying on TEE. Crypt𝜖 [59]

is a recent end-to-end system executing “DP programs”. Crypt𝜖

has a different model than Epsolute in that it assumes two non-

colluding servers, an adversarial querying user (the analyst), and

it uses DP to protect the privacy of an individual in the database,

which includes volume-hiding for aggregate queries. Crypt𝜖 also

does not consider oblivious execution and attacks against the AP.

Shrinkwrap [5] (and its predecessor SMCQL [4]) is an excellent

system designed for complex queries over federated and distributed

data sources. In Shrinkwrap, AP protection is achieved by using

oblivious operators (linear scan and sort) and CV is concealed by

adding fake records to intermediate results with DP. Padding the

result to the maximum size first and doing a linear scan over it

afterwards to “shrink” it using DP, is much more expensive than in

Epsolute, however. In addition, in processing a query, the worker

nodes are performing an 𝑂 (𝑛 log𝑛) cost oblivious sorting, where 𝑛
is the maximum result size (whole table for range query), since they

are designed to answer more general complex queries. SEAL [21]

offers adjustable AP and CV leakages, up to specific bits of leakage.

SEAL builds on top of Logarithmic-SRC [22], splits storage into

multiple ORAMs to adjust AP, and pads results size to a power of 2

to adjust CV. Epsolute, on the other hand, fully hides the AP and

uses DP with its guarantees to pad the result size. PINED-RQ [60]

samples Laplacian noise right in the B+ tree index tree, adding

fake and removing real pointers according to the sample. Unlike

Epsolute, PINED-RQ allows false negatives (i.e., result records not
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included in the answer), and does not protect against AP leakage. On

the theoretical side, Chan et al. [18] (followed by Beimel et al. [8])

treat the AP itself as something to protect with DP. [18] introduces

a notion of differential obliviousness that is admittedly weaker

than the full obliviousness used in Epsolute. Most importantly, [18]

ensures differential privacy w.r.t. the ORAM only, while Epsolute
ensures DP w.r.t. the entire view of the adversary.

Enclave-based solutions. Works in this category use trusted execu-

tion environment (usually, SGX enclave). These works are primarily

concerned with the AP protection for both trusted and untrusted

memory, unlike Epsolute which also protects CV. Cipherbase [1, 2]

was a pioneer introducing the idea of using TEE (FPGA at that time)

to assist with DBMS security. HardIDX [29] simply puts the B+ tree

in the enclave, while StealthDB [70] symmetrically encrypts all

records and brings them in the enclave one at a time for processing.

EnclaveDB [57] assumes somewhat unrealistic 192GB enclave and

puts the entire database in it. ObliDB [28] and Opaque [75] assume

fully oblivious enclave memory (not available as of today) and de-

vise algorithms that use this fully trusted portion to obliviously

execute common DBMS operators, like filters and joins. Oblix [50]

provides a multimap that is oblivious both in and out of the enclave.

HybrIDX claims protection against both AP and CV leakages, but

unlike Epsolute it only obfuscates them. Epsolute offers an indis-

tinguishability guarantee for AP and a DP guarantee for CV, while

HybrIDX hides the exact result size and only obfuscates the AP.

Lastly, Hermetic [74] takes on the SGX side-channel attacks, in-

cluding AP. It provides oblivious primitives, however, it only offers

protection against software and not physical attacks (e.g., it trusts

a hypervisor to disable interrupts).

Solutions against the snapshot adversary. Works in this category

protect against the snapshot adversary, which takes a snapshot

of the data at a fixed point in time (e.g., stolen hard drive). We

stress that Epsolute provides semantic security against the snap-

shot adversary on top of AP and CV protection. CryptDB [56] is

a seminal work in this direction offering computations over en-

crypted data. It has since been shown (e.g. [9, 41, 51]) that the

underlying property-preserving schemes allow for reconstruction

attacks. Arx [55] provides strictly stronger security guarantees by

using only semantically secure primitives. Seabed [54] uses an addi-

tively symmetric homomorphic encryption scheme for aggregates

and certain filter queries. Samanthula et al. [62] offer a method

to verify and apply a predicate (a junction of conditions) using

garbled circuits or homomorphic encryption without revealing the

predicate itself. SisoSPIR [39] presents a mechanism to build an

oblivious index tree such that neither party learns the pass taken.

See [15] for a survey of range query protocols in this category.

2 BACKGROUND
In this section we describe an outsourced database system adapted

from [43], a base for our own model (Section 3), and the construc-

tions we will use as building blocks in our solution.

2.1 Outsourced Database System
We abstract a database as a collection of 𝑛 records 𝑟 , each with a

unique identifier 𝑟 ID, associated with search keys SK: D = {(𝑟1,

𝑟 ID
1
, SK1), . . . , (𝑟𝑛, 𝑟 ID𝑛 , SK𝑛)}. We assume that all records have an

identical fixed bit-length, and that search keys are elements of the

domain X = {1, . . . , 𝑁 } for some 𝑁 ∈ N. Outsourced database

systems support search keys on multiple attributes, with a set of

search keys for each of the attributes of a record. For the ease of

presentation, we describe the model for a single indexed attribute

and then show how to extend it to support multiple attributes.

A query is a predicate 𝑞 : X → {0, 1}. Evaluating a query 𝑞

on a database D results in 𝑞(D) = {𝑟𝑖 : 𝑞(SK𝑖 ) = 1}, all records
whose search keys satisfy 𝑞.

Let Q be a set of queries. An outsourced database system for

queries in Q consists of two protocols between two stateful parties:

a user U and a server S (adapted from [43]):

Setup protocol Πsetup: U receives as input a database D = {(𝑟1,
𝑟 ID
1
, SK1), . . . , (𝑟𝑛, 𝑟 ID𝑛 , SK𝑛)}; S has no input. The output for

S is a data structure DS; U has no output besides its state.

Query protocol Πquery: U has a query 𝑞 ∈ Q produced in the

setup protocol as input; S has as input DS produced in the

setup protocol. U outputs 𝑞(D); S has no formal output.

(Both parties may update their internal states.)

For correctness, we require that for any database D = {(𝑟1, 𝑟 ID
1
,

SK1), . . . , (𝑟𝑛, 𝑟 ID𝑛 , SK𝑛)} and query 𝑞 ∈ Q, it holds that running
Πsetup and then Πquery on the corresponding inputs yields for U

the correct output {𝑟𝑖 : 𝑞(SK𝑖 ) = 1} with overwhelming probability

over the coins of the above runs. We call the protocol 𝜂-wrong if

this probability is at least 1 − 𝜂.

2.2 Differential Privacy and Sanitization
Differential privacy is a definition of privacy in analysis that pro-

tects information that is specific to individual records. More for-

mally, we call databases D1 ∈ X𝑛 and D2 ∈ X𝑛 over domain X
neighboring (denoted D1 ∼ D2) if they differ in exactly one record.

Definition 2.1 ([23, 24]). A randomized algorithm A is (𝜖, 𝛿)-
differentially private if for all D1 ∼ D2 ∈ X𝑛 , and for all subsets O
of the output space of A,

Pr [A (D1) ∈ O] ≤ exp(𝜖) · Pr [A (D2) ∈ O] + 𝛿 .

The probability is taken over the random coins of A.

When 𝛿 = 0 we omit it and say that A preserves pure differ-

ential privacy, otherwise (when 𝛿 > 0) we say that A preserves

approximate differential privacy.

We will use mechanisms for answering count queries with dif-

ferential privacy. Such mechanisms perturb their output to mask

out the effect of any single record on their outcome. The simplest

method for answering count queries with differential privacy is the

Laplace Perturbation Algorithm (LPA) [24] where random noise

drawn from a Laplace distribution is added to the count to be pub-

lished. The noise is scaled so as to hide the effect any single record

can have on the count. More generally, the LPA can be used to ap-

proximate any statistical result by scaling the noise to the sensitivity

of the statistical analysis.
1

1
The sensitivity of a query 𝑞 mapping databases into R𝑁 is defined to be Δ(𝑞) =
maxD

1
∼D

2
∈X𝑛 ∥𝑞 (D1) − 𝑞 (D2) ∥1 .
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Theorem 2.2 (adapted Theorem 1 from [24]). Let𝑞 : D → R𝑁 .

An algorithm A that adds independently generated noise from a zero-

mean Laplace distribution with scale 𝜆 = Δ(𝑞)/𝜖 to each of the 𝑁

coordinates of 𝑞(D), satisfies 𝜖-differential privacy.

While Theorem 2.2 is an effective and simple way of answering

a single count query, we will need to answer a sequence of count

queries, ideally, without imposing a bound on the length of this

sequence. We will hence make use of sanitization algorithms.

Definition 2.3. Let Q be a collection of queries. An (𝜖, 𝛿, 𝛼, 𝛽)-
differentially private sanitizer for Q is a pair of algorithms (A, B)
such that:

• 𝐴 is (𝜖, 𝛿)-differentially private, and

• on input a dataset D = 𝑑1, . . . , 𝑑𝑛 ∈ X𝑛 , A outputs a data

structure DS such that with probability 1 − 𝛽 for all 𝑞 ∈ Q,
|B (DS, 𝑞) −∑

𝑖 𝑞(𝑑𝑖 ) | ≤ 𝛼 .

Remark 2.4. Given an (𝜖, 𝛿, 𝛼, 𝛽)-differentially private sanitizer as
in Definition 2.3 one can replace the answer B (DS, 𝑞) with B

′(DS,
𝑞) = B (DS, 𝑞) + 𝛼 . Hence, with probability 1 − 𝛽 , for all 𝑞 ∈ Q,
0 ≤ B

′ (DS, 𝑞) −∑
𝑖 𝑞(𝑑𝑖 ) ≤ 2𝛼 . We will hence assume from now on

that sanitizers have this latter guarantee on their error.

The main idea of sanitization (a.k.a. private data release) is to

release specific noisy statistics on a private dataset once, which can

then be combined in order to answer an arbitrary number of queries

without violating privacy. Depending on the query type and the

notion of differential privacy (i.e., pure or approximate), different up-

per bounds on the error have been proven. Omitting the dependency

on 𝜖, 𝛿 , in case of point queries over domain size 𝑁 , pure differential

privacy results in 𝛼 = Θ(log𝑁 ) [6], while for approximate differ-

ential privacy 𝛼 = O(1) [7]. For range queries over domain size 𝑁 ,

these bounds are 𝛼 = Θ(log𝑁 ) for pure differential privacy [10, 25],
and 𝛼 = O

(
(log∗ 𝑁 )1.5

)
for approximate differential privacy (with

an almost matching lower bound of 𝛼 = Ω(log∗ 𝑁 )) [7, 16, 42].
More generally, Blum et al. [10] showed that any finite query set Q
can be sanitized, albeit non-efficiently.

Answering point and range queries with differential privacy. Utilizing
the LPA for answering point queries results in error 𝛼 = O(log𝑁 ).
A practical solution for answering range queries with error bounds

very close to the optimal ones is the hierarchical method [25, 36, 72].

The main idea is to build an aggregate tree on the domain, and add

noise to each node proportional to the tree height (i.e., noise scale

logarithmic in the domain size 𝑁 ). Then, every range query is

answered using the minimum number of tree nodes. Qardaji et al.

[58] showed that the hierarchical algorithm of Hay et al. [36], when

combined with their proposed optimizations, offers the lowest error.

Composition. Finally, we include a composition theorem (adapted

from [47]) based on [23, 24]. It concerns executions of multiple dif-

ferentially private mechanisms on non-disjoint and disjoint inputs.

Theorem 2.5. Let A1, . . . ,A𝑟 be mechanisms, such that each A𝑖

provides 𝜖𝑖 -differential privacy. Let D1, . . . ,D𝑟 be pairwise non-

disjoint (resp., disjoint) datasets. Let A be another mechanism that

executes A1 (D1), . . . ,A𝑟 (D𝑟 ) using independent randomness for

each A𝑖 , and returns their outputs. Then, mechanism A is

(∑𝑟
𝑖=1 𝜖𝑖

)
-

differentially private (resp.,

(
max

𝑟
𝑖=1

𝜖𝑖

)
-differentially private).

2.3 Oblivious RAM
Informally, Oblivious RAM (ORAM) is a mechanism that lets a user

hide their RAM access pattern to remote storage. An adversarial

server can monitor the actual accessed locations, but she cannot

tell a read from a write, the content of the block or even whether

the same logical location is being referenced. The notion was first

defined by Goldreich [31] and Goldreich and Ostrovsky [32].

More formally, a (𝜂1, 𝜂2)-ORAM protocol is a two-party protocol

between a user U and a server S who stores a RAM array. In each

round, the user U has input (𝑜, 𝑎, 𝑑), where 𝑜 is a RAM operation (r
orw), 𝑎 is a memory address and 𝑑 is a new data value, or⊥ for read

operation. The input of S is the current array. Via the protocol, the

server updates the memory or returns to U the data stored at the

requested memory location, respectively. We speak of a sequence

of such operations as a program y being executed under the ORAM.

An ORAM protocol must satisfy correctness and security. Cor-

rectness requires that U obtains the correct output of the computa-

tion except with at most probability 𝜂1. For security, we require that

for every user U there exists a simulator SimORAM which provides

a simulation of the server’s view in the above experiment given

only the number of operations. That is, the output distribution of

SimORAM (𝑐) is indistinguishable from ViewS with probability at

most 𝜂2 after 𝑐 protocol rounds.

ORAM protocols are generally stateful, after each execution the

client and server states are updated. For brevity, throughout the

paper we will assume the ORAM state updates are implicit, including

the encryption key 𝐾 generated and maintained by the client.

Some existing efficient ORAM protocols are Square Root ORAM

[31], Hierarchical ORAM [32], Binary-Tree ORAM [63], Interleave

Buffer Shuffle Square Root ORAM [73], TP-ORAM [64], Path-ORAM

[65] and TaORAM [61]. For detailed descriptions of each protocol,

we recommend the work of Chang et al. [19]. The latter three

ORAMs achieve the lowest communication and storage overheads,

O(log𝑛) and O(𝑛), respectively.

3 DIFFERENTIALLY PRIVATE OUTSOURCED
DATABASE SYSTEMS

In this sectionwe present ourmodel, differentially private outsourced

database system, CDP-ODB, its security definition, query types and

efficiencymeasures. It is an extension of the ODBmodel in Section 2.

3.1 Adversarial model
We consider an honest-but-curious polynomial time adversary that

attempts to breach differential privacy with respect to the input

database D. We observe later in Section 3.1.1 that it is impossible

to completely hide the number of records returned on each query

without essentially returning all the database records on each query.

This, in turn, means that different query sequences may be distin-

guished, and, furthermore, that differential privacy may not be

preserved if the query sequence depends on the content of the data-

base records. We hence, only require the protection of differential

privacy with respect to every fixed query sequence. Furthermore,

we relax to computational differential privacy (following [49]).

In the following definition, the notation ViewΠ (D, 𝑞1, . . . , 𝑞𝑚)
denotes the view of the server S in the execution of protocol Π in

answering queries 𝑞1, . . . , 𝑞𝑚 with the underlying database D.
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Definition 3.1. We say that an outsourced database system Π is

(𝜖, 𝛿)-computationally differentially private (a.k.a. CDP-ODB) if for

every polynomial time distinguishing adversary A, for every neigh-

boring databasesD ∼ D ′, and for every query sequence 𝑞1, . . . , 𝑞𝑚 ∈
Q𝑚 where𝑚 = poly(𝜆),

Pr

[
A

(
1
𝜆,ViewΠ (D, 𝑞1, . . . , 𝑞𝑚)

)
= 1

]
≤

exp 𝜖 · Pr
[
A

(
1
𝜆,ViewΠ

(
D ′, 𝑞1, . . . , 𝑞𝑚

) )
= 1

]
+ 𝛿 + negl(𝜆) ,

where the probability is over the randomness of the distinguishing

adversary A and the protocol Π.

Remark 3.2 (Informal). We note that security and differential

privacy in this model imply protection against communication volume

and access pattern leakages and thus prevent a range of attacks, such

as [17, 43, 51].

3.1.1 On impossibility of adaptive queries. Non-adaptivity in our

CDP-ODB definition does not reflect a deficiency of our specific

protocol but rather an inherent source of leakage when the queries

may depend on the decrypted data. Consider an adaptive CDP-

ODB definition that does not fix the query sequence 𝑞1, . . . , 𝑞𝑚 in

advance but instead an arbitrary (efficient) user U chooses them

during the protocol execution with S. As before, we ask that the S’s

view is DP on neighboring databases for every such U. We observe

that this definition cannot possibly be satisfied by any outsourced

database system without unacceptable efficiency overhead. Note

that non-adaptivity here does not imply that the client knows all

the queries in advance, but rather can choose them at any time

(e.g., depending on external circumstances) as long as they do not

depend on true answers to prior queries.

To see this, consider two neighboring databasesD,D ′. Database
D has 1 record with key = 0 and D ′ has none. Furthermore, both

have 50 records with key = 50 and 100 records with key = 100.

User U queries first for the records with key = 0, and then if there

is a record with key = 0 it queries for the records with key = 50,

otherwise for the records with key = 100. Clearly, an efficient out-

sourced database system cannot return nearly as many records

when key = 50 versus key = 100 here. Hence, this allows distin-

guishing D,D ′ with probability almost 1.

To give a concrete scenario, suppose neighboring medical data-

bases differ in one recordwith a rare diagnosis “Alzheimer’s disease”.

A medical professional queries the database for that diagnosis first

(point query), and if there is a record, she queries the senior patients

next (range query, age ≥ 65), otherwise she queries the general
population (resulting in more records). We leave it open to mean-

ingfully strengthen our definition while avoiding such impossibility

results, and we defer the formal proof to future work.

3.2 Query types
In this work we are concerned with the following query types:

Range queries Here we assume a total ordering on X. A query

𝑞 [𝑎,𝑏 ] is associated with an interval [𝑎, 𝑏] for 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑁 such

that 𝑞 [𝑎,𝑏 ] (𝑐) = 1 iff 𝑐 ∈ [𝑎, 𝑏] for all 𝑐 ∈ X. The equivalent SQL
query is:

SELECT * FROM table WHERE attribute BETWEEN a AND b;

Point queries Here X is arbitrary and a query predicate 𝑞𝑎 is

associated with an element 𝑎 ∈ X such that 𝑞𝑎 (𝑏) = 1 iff 𝑎 = 𝑏.

In an ordered domain, point queries are degenerate range queries.

The equivalent SQL query is:

SELECT * FROM table WHERE attribute = a;

3.3 Measuring Efficiency
We define two basic efficiency measures for a CDP-ODB.

Storage efficiency is defined as the sum of the bit-lengths of the

records in a database relative to the bit-length of a corresponding

encrypted database. Specifically, we say that an outsourced database

system has storage efficiency of (𝑎1, 𝑎2) if the following holds. Fix
any D = {(𝑟1, 𝑟 ID

1
, SK1), . . . , (𝑟𝑛, 𝑟 ID𝑛 , SK𝑛)} and let 𝑛1 =

∑𝑛
𝑖=1 |𝑟𝑖 |.

Let Sstate be an output of S on a run of Πsetup where U has input

D, and let 𝑛2 = |Sstate |. Then 𝑛2 ≤ 𝑎1𝑛1 + 𝑎2.
Communication efficiency is defined as the sum of the lengths

of the records in bits whose search keys satisfy the query relative

to the actual number of bits sent back as the result of a query.

Specifically, we say that an outsourced database system has com-

munication efficiency of (𝑎1, 𝑎2) if the following holds. Fix any 𝑞

and DS output by Πsetup, let U and S execute Πquery where U has

inputs 𝑞 , and output 𝑅, and S has inputDS. Let𝑚1 be the amount

of data in bits transferred between U and S during the execution of

Πquery, and let𝑚2 = |𝑅 |. Then𝑚2 ≤ 𝑎1𝑚1 + 𝑎2.
Note that 𝑎1 ≥ 1 and 𝑎2 ≥ 0 for both measures. We say that

an outsourced database system is optimally storage efficient (resp.,

optimally communication efficient) if it has storage (resp., commu-

nication) efficiency of (1, 0).

4 EPSOLUTE
In this section we present a construction, Epsolute, that satisfies
the security definition in Section 3, detailing algorithms for both

range and point query types. We also provide efficiency guarantees

for approximate and pure DP versions of Epsolute.

4.1 General construction
Let Q be a collection of queries. We are interested in building

a differentially private outsourced database system for Q, called
Epsolute. Our solution will use these building blocks.

• A (𝜂1, 𝜂2)-ORAM protocol ORAM(·).
• An (𝜖, 𝛿, 𝛼, 𝛽)-differentially private sanitizer (A, B) forQ and

negligible 𝛽 , which satisfies the non-negative noise guaran-

tee from Remark 2.4.

• A pair of algorithms CreateIndex and Lookup. CreateIn-

dex consumes D and produces an index data structure I
that maps a search key SK to a list of record IDs 𝑟 ID corre-

sponding to the given search key. Lookup consumes I and

𝑞 and returns a list 𝑇 = 𝑟 ID
1
, . . . , 𝑟 ID|𝑇 | of record IDs matching

the supplied query.

Our protocol Π = (Πsetup,Πquery) of Epsolute works as shown
in Algorithm 1. Hereafter, we reference lines in Algorithm 1. See

Fig. 1 for a schematic description of the protocol.

Setup protocol Πsetup. Let U’s input be a database D = {(𝑟1,
𝑟 ID
1
, SK1), . . . , (𝑟𝑛, 𝑟 ID𝑛 , SK𝑛)} (line 2).U creates an index I mapping



CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill

Algorithm 1 Epsolute protocol. ORAM (·) denotes an execution of ORAM protocol (Section 2.3), where U plays the role of the client. ORAM

protocol client and server states are implicit. 𝑆 \𝑇 represents a set of valid record IDs 𝑆 that are not in the true result set 𝑇 .

Πsetup
1 : User U Server S
2 : Input: D Input: ∅
3 : I ← CreateIndex (D)

4 : y = (w, 𝑟 ID𝑖 , 𝑟𝑖 )
��𝑛
𝑖=1

5 :
ORAM (y)

6 : DS ← A (SK1, . . . , SK𝑁 ) DS

7 : Output: I Output: DS

Πquery
1 : User U Server S

2 : Input: 𝑞, I Input: DS

3 : 𝑇 ← Lookup (I, 𝑞) 𝑞
𝑐 ← B (DS, 𝑞)

4 : ytrue = (r, 𝑟 ID𝑖 ,⊥)
��
𝑖∈𝑇

𝑐

5 : ynoise = (r, 𝑆 \𝑇,⊥) |𝑐−|𝑇 |
1

6 : 𝑅
ORAM (ytrue ∥ynoise)

7 : Output: 𝑅 Output: ∅

search keys to record IDs corresponding to these keys (line 3). U

sends over the records to S by executing the ORAM protocol on

the specified sequence (lines 4 to 5). U generates a DP structure

DS over the search keys using sanitizer A, and sends DS over to

S (line 6). The output of U is I and of S is DS; final ORAM states

of S and U are implicit, including encryption key 𝐾 (line 7).

Query protocol Πquery. U starts with a query 𝑞 and index I,
S starts with a DP structure DS. One can think of these inputs

as outputs of Πsetup (line 2). U immediately sends the query to S,

which uses the sanitizer B to compute the total number of requests

𝑐 , while U uses index I to derive the true indices of the records

the query 𝑞 targets (line 3). U receives 𝑐 from S and prepares two

ORAM sequences: ytrue for real records retrieval, and ynoise to pad

the number of requests to 𝑐 to perturb the communication volume.

ynoise includes valid non-repeating record IDs that are not part of

the true result set 𝑇 (lines 4 to 5). U fetches the records, both real

and fake, from S using the ORAM protocol (line 6). The output of U

is the filtered set of records requested by the query 𝑞 ; final ORAM

states of S and U are implicit (line 7).

The protocols for point and range queries only differ in sanitizer

implementations, see Sections 4.5 and 4.6. Note above that in any

execution of Πquery we have 𝑐 ≥ 𝑞(D) with overwhelming proba-

bility 1− 𝛽 (by using sanitizers satisfying Remark 2.4), and thus the

protocol is well-defined and its accuracy is 1− 𝛽 . Also note that the
DP parameter 𝛿 is lower-bounded by 𝛽 because sampling negative

noise, however improbable, violates privacy, and therefore the final

construction is (𝜖, 𝛽)-DP.

Server User

User
ORAM

ServerStorage

Searchkey RecordID
Salary$40K IDs 56,46,89
Salary$50K IDs 85,38,63

... ...
Recordindex

Query:
“Salaries $40K–$50K"

ORAM read requests

ClientDPhisotgram
(point queries)

DPtree(rangequeries)

noise

noise

Figure 1: Epsolute construction

4.2 Security
Theorem 4.1. Epsolute is (𝛽 · 𝑚)-wrong and (𝜖, 𝛿)-CDP-ODB

where the negligible term is negl(𝜆) = 2 · 𝜂2.

Proof. We consider a sequence of views

View1 → View2 → View3 → View4 .

View1 is ViewΠ (D, 𝑞1, . . . , 𝑞𝑚). View2 is produced only from

DS ← A (SK1, . . . , SK𝑁 ). Namely, compute 𝑐𝑖 ← A (DS, 𝑞𝑖 ) for
all 𝑖 and run ORAM simulator on

∑
𝑖 𝑐𝑖 . By ORAM security,

Pr [A(View1)] − Pr [A(View2)] ≤ 𝜂2 .

View3 is produced similarly butDS ← A

(
SK′

1
, . . . , SK′

𝑁

)
instead.

Note that the 𝑐𝑖 are simply post-processing on DS via B so

Pr [A(View2)] = exp(𝜖) · Pr [A(View3)] + 𝛿 .
View4 = ViewΠ (D ′, 𝑞1, . . . , 𝑞𝑚). It follows by ORAM security

Pr [A(View3)] − Pr [A(View4)] ≤ 𝜂2 .
Putting this all together completes the proof. □

4.3 Efficiency
For an ORAMwith communication efficiency (𝑎1, 𝑎2) and an (𝛼, 𝛽)-
differentially private sanitizer, the Epsolute communication effi-

ciency is (𝑎1, 𝑎2 · 𝛼). The efficiency metrics demonstrate how the

total storage or communication volume (the number of stored or

transferred bits) changes additively and multiplicatively as the func-

tions of data size 𝑛 and domain 𝑁 . We therefore have the following

corollaries for the efficiency of the system in the cases of approxi-

mate and pure differential privacy.

Corollary 4.2. Epsolute is an outsourced database system with

storage efficiency (O(1), 0). Depending on the query type, assume it

offers the following communication efficiency.

Range queries
(
O(log𝑛),O

(
2
log
∗ 𝑁

log𝑛

))
Point queries (O(log𝑛),O(log𝑛))
Then, there is a negligible 𝛿 such that Epsolute satisfies (𝜖, 𝛿)-differ-
ential privacy for some 𝜖 .2

2
Note that the existence of 𝜖 in this setting implies that the probability of an adversary

breaking the DP guarantees is bounded by it.
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Proof. By using ORAM, we store only the original data once

and hence, we get optimal storage efficiency.

The communication efficiency depends on the upper bound of

the error for each sanitizer when 𝛿 > 0, as described in Section 2.2

and Remark 2.4. The most efficient ORAM protocol to date has

O(log𝑛) communication overhead (see Section 2.3). □

Corollary 4.3. Epsolute is an outsourced database system with

storage efficiency (O(1), 0). Depending on the query type, assume it

offers the following communication efficiency.

Range queries (O(log𝑛),O(log𝑁 log𝑛))
Point queries (O(log𝑛),O(log𝑁 log𝑛))
Then, Epsolute satisfies 𝜖-differential privacy for some 𝜖 .

Proof. Similarly, we derive the proof by considering the use of

ORAM and the upper bound of the error for each sanitizer when

𝛿 = 0 in Section 2.2. □

4.4 Extending to multiple attributes
We will now describe how Epsolute supports multiple indexed

attributes and what the privacy and performance implications are.

The naïve way is to simply duplicate the entire stack of states of

U and S, and during the query use the states whose attribute the

query targets. However, Epsolute design allows to keep the most

expensive part of the state — the ORAM state — shared for all

attributes and both types of queries. Specifically, the index I and

DP structureDS are generated per attribute and query type, while

U and S ORAM states are generated once. This design is practical

sinceDS is tiny and index I is relatively small compared to ORAM

states, see Section 6.

We note that in case the indices grow large in number, it is

practical to outsource them to the adversarial server using ORAM

and download only the ones needed for each query. In terms of

privacy, the solution is equivalent to operating different Epsolute
instances because ORAM hides the values of records and access

patterns entirely. Due to Theorem 2.5 for non-disjoint datasets, the

total privacy budget of the multi-attribute system will be the sum

of individual budgets for each attribute / index.

Next, we choose two DP sanitizers for our system, for point and

for range queries, and calculate the 𝛼 values to make them output

positive values with high probability, consistent with Remark 2.4.

4.5 Epsolute for point queries
For point queries, we use the LPA method as the sanitizer to ensure

pure differential privacy. Specifically, for every histogram bin, we

draw noise from the Laplace distribution with mean 𝛼𝑝 and scale

𝜆 = 1/𝜖. To satisfy Remark 2.4, we have to set 𝛼𝑝 such that if values

are drawn from Laplace

(
𝛼𝑝 , 1/𝜖

)
at least as many times as the

number of bins 𝑁 , they are all positive with high probability 1 − 𝛽 ,
for negligible 𝛽 .

We can compute the exact minimum required value of 𝛼𝑝 in

order to ensure drawing positive values with high probability by

using the CDF of the Laplace distribution. Specifically, 𝛼𝑝 should be

equal to the minimum value that satisfies the following inequality.(
1 − 1

2

𝑒−𝛼𝑝 ·𝜖
)𝑁
≤ 1 − 𝛽

which is equivalent to

𝛼𝑝 =

−
ln

(
2 − 2 𝑁

√︁
1 − 𝛽

)
𝜖


4.6 Epsolute for range queries
For range queries, we implement the aggregate tree method as the

sanitizer. Specifically, we build a complete 𝑘-ary tree on the domain,

for a given 𝑘 . A leaf node holds the number of records falling into

each bin plus some noise. A parent node holds sum of the leaf values

in the range covered by this node, plus noise. Every time a query

is issued, we find the minimum number of nodes that cover the

range, and determine the required number of returned records by

summing these node values. Then, we ask the server to retrieve

the records in the range, plus to retrieve multiple random records

so that the total number of retrieved records matches the required

number of returned records.

The noise per node is drawn from the Laplace distribution with

mean 𝛼ℎ and scale 𝜆 =
log𝑘 𝑁

𝜖 . Consistent with Remark 2.4, we

determine the mean value 𝛼ℎ in order to avoid drawing negative

values with high probability. We have to set 𝛼ℎ such that if values

are drawn from Laplace

(
𝛼ℎ,

log𝑘 𝑁

𝜖

)
at least as many times as

the number of nodes in the tree, they are all positive with high

probability 1 − 𝛽 , for negligible 𝛽 .
Again, we can compute the exact minimum required value of 𝛼ℎ

in order to ensure drawing positive values with high probability by

using the CDF of the Laplace distribution. Specifically, 𝛼ℎ should be

equal to the minimum value that satisfies the following inequality.(
1 − 1

2

𝑒
− 𝛼ℎ ·𝜖

log𝑘 𝑁

)nodes
≤ 1 − 𝛽

which is equivalent to

𝛼ℎ =

⌈
−
ln (2 − 2 nodes

√︁
1 − 𝛽) · log𝑘 𝑁
𝜖

⌉
(1)

where nodes = 𝑘 ⌈log𝑘 (𝑘−1)+log𝑘 𝑁−1⌉−1
𝑘−1 +𝑁 is the total number of tree

nodes.

5 AN EFFICIENT PARALLEL EPSOLUTE
While the previously described scheme is a secure and correct

CDP-ODB, a single-threaded implementation may be prohibitively

slow in practice. To bring the performance closer to real-world

requirements, we need to be able to scale the algorithm horizontally.

In this section, we describe an upgrade of Epsolute — a scalable

parallel solution.

We suggest two variants of parallel Epsolute protocol. Both of

them work by operating𝑚 ORAMs and randomly assigning to each

of them 𝑛/𝑚 database records. For each query, we utilize the index

I to find the required records from the corresponding ORAMs. For

each ORAM, we execute a separate thread to retrieve the records.

The threads work in parallel and there is no need for locking, since

each ORAM works independently from the rest. We present two

methods that differ in the way they build and store DP structure

DS, and hence the number of ORAM requests they make.



CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill

Algorithm 2 Parallel Epsolute for Π𝛾 , extends Algorithm 1.𝑚 is the number of parallel ORAMs. H is a random hash function H : {0, 1}∗ →
{1, . . . ,𝑚}. 𝛾 and

˜𝑘0 are computed as in Section 5.2. U and S maintain𝑚 ORAM states implicitly.

Πsetup of Π𝛾

1 : User U Server S
2 : Input: D Input: ∅
3 : I ← CreateIndex (D,𝑚)
. . . . . . . . . . . . . . for 𝑗 ∈ {1, . . . ,𝑚} do (in parallel) . . . . . . . . . . . . . .

4 :

〈
𝑟, 𝑟 ID

〉
s.t. H

(
𝑟 ID

)
= 𝑗

5 : y =

〈
(w, 𝑟 ID, 𝑟 )

〉
6 :

ORAM𝑗 (y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . endfor . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 : DS ← A (SK1, . . . , SK𝑁 ) DS

8 : Output: I Output: DS

Πquery of Π𝛾

1 : User U Server S

2 : Input: 𝑞, I Input: DS

3 : 𝑇1, . . . ,𝑇𝑚 ← Lookup (𝐼 , 𝑞) 𝑞
𝑘 ← B (DS, 𝑞)

4 :
𝑐

𝑐 ← (1 + 𝛾 )
˜𝑘0

𝑚

. . . . . . . . . . . . . . . . . . . . . for 𝑗 ∈ {1, . . . ,𝑚} do (in parallel) . . . . . . . . . . . . . . . . . . . . .

5 : ytrue = (r, 𝑟 ID𝑖 ,⊥)
��
𝑖∈𝑇𝑗

6 : ynoise = (r, 𝑆 \𝑇𝑗 ,⊥)
��𝑐− |𝑇𝑗 |
1

7 : 𝑅 𝑗
ORAM𝑗 (ytrue ∥ynoise)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . endfor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 : Output: 𝑅 𝑗

��𝑚
𝑗=1

Output: ∅

5.1 No-𝛾-method: DP structure per ORAM
InΠno−𝛾 , for each ORAM / subset of the dataset, we build a DP index

the same way as described in Section 4. We note that Theorem 2.5

for disjoint datasets applies to this construction: the privacy budget

𝜖 for the construction is the largest (least private) among the 𝜖’s of

the DP indices for each ORAM / subset of the dataset.

The communication efficiency changes because (i) we essentially

add𝑚 record subsets in order to answer a query, each having at

most 𝛼 extra random records, and (ii) each ORAM holds fewer

records than before, resulting in a tree of height log
𝑛
𝑚 .

However, we cannot expect that the records required for each

query are equally distributed among the different ORAMs in order

to reduce the multiplicative communication cost from log𝑛 to
log𝑛
𝑚 .

Instead, we need to bound the worst case scenario which is repre-

sented by the maximum number of records from any ORAM that is

required to answer a query. This can be computed as follows.

Let 𝑋 𝑗 be 1 if a record for answering query 𝑞 is in a specific

ORAM𝑗 , and 0 otherwise. Due to the random assignment of records

to ORAMs, Pr

[
𝑋 𝑗 = 1

]
= 1/𝑚. Assume that we need 𝑘0 records in

order to answer query 𝑞 . The maximum number of records from

ORAM𝑗 in order to answer 𝑞 is bounded as follows.

Pr


𝑘0∑︁
𝑖=1

𝑋𝑖 > (1 + 𝛾)
𝑘0

𝑚

 ≤ exp

(
−𝑘0𝛾

2

3𝑚

)
(2)

Finally, we need to determine the value of𝛾 such that exp

(
−𝑘0𝛾

2

3𝑚

)
is smaller than the value 𝛽 . Thus, 𝛾 =

√︃
−3𝑚 log 𝛽

𝑘0
. The communi-

cation efficiency for each query type is described in the following

corollary.

Corollary 5.1. Let Πno−𝛾 be an outsourced database system with

storage efficiency (O(1), 0). Depending on the query type, Πno−𝛾
offers the following communication efficiency.

Range queries
(
O

((
1 +

√︃
−3𝑚 log 𝛽

𝑘0

)
log

𝑛
𝑚

)
,O

(
log

1.5 𝑁
𝜖 𝑚 log𝑛

))

Point queries
(
O

((
1 +

√︃
−3𝑚 log 𝛽

𝑘0

)
log

𝑛
𝑚

)
,O

(
log𝑁
𝜖 𝑚 log𝑛

))
Then, Πno−𝛾 satisfies 𝜖-differential privacy for some 𝜖 .

In our experiments, we set𝑚 as a constant depending on the

infrastructure. However, if𝑚 is set asO(log𝑛), the total communica-

tion overhead of the construction will still exceed the lower-bound

presented in [46].

5.2 𝛾-method: shared DP structure
In Π𝛾 , we maintain a single shared DP structureDS. When a query

is issued, we must ensure that the number of records retrieved from

every ORAM is the same. As such, depending on the required

noisy number of records
˜𝑘0, we need to retrieve at most (1 + 𝛾) ˜𝑘0𝑚

records from each ORAM, see Eq. (2), for 𝛾 =

√︂
−3𝑚 log 𝛽

˜𝑘0
. Setting

˜𝑘0 = 𝑘0 + log
1.5 𝑁
𝜖 for range queries and

˜𝑘0 = 𝑘0 + log𝑁
𝜖 for point

queries, the communication efficiency is as follows.

Corollary 5.2. Let Π𝛾 be an outsourced database system with

storage efficiency (O(1), 0). Depending on the query type, Π𝛾 offers

the following communication efficiency.

Range queries

(
O

((
1 +

√︂
−3𝑚 log 𝛽

𝑘0+ log
1.5 𝑁

𝜖

)
log

𝑛
𝑚

(
1 + log

1.5 𝑁
𝜖

))
, 0

)
Point queries

(
O

((
1 +

√︂
−3𝑚 log 𝛽

𝑘0+ log𝑁

𝜖

)
log

𝑛
𝑚

(
1 + log𝑁

𝜖

))
, 0

)
Then, Π𝛾 satisfies 𝜖-differential privacy for some 𝜖 .

Π𝛾 is depicted in Algorithm 2. There are a few extensions to

the subroutines and notation from Algorithm 1. CreateIndex and

Lookup now build and query the index which maps a search key to

a pair — the record ID and the ORAM ID (1 to𝑚) which stores the

record. Lines 4 to 6 of Algorithm 2 Πsetup repeat for each ORAM

and operate on the records partitioned for the given ORAM using

hash function H on the record ID. A shared DP structure is created
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with the sanitizerA (line 7). In Algorithm 2 Πquery, the total number

of ORAM requests is computed once (line 4). Lines 5 to 7 repeat for

each ORAM and operate on the subset of records stored in the given

ORAM. Note that U and S implicitly maintain𝑚 ORAM states, and

the algorithm uses the (A, B) sanitizer defined in Section 4.

Note that we guarantee privacy and access pattern protection on

a record level. Each ORAM gets accessed at least once (much more

than once for a typical query) thus the existence of a particular

result record in a particular ORAM is hidden.

5.3 Practical improvements
Here we describe the optimizations aimed at bringing the construc-

tion’s performance to the real-world demands.

5.3.1 ORAM request batching. We have noticed that although the

entire set of ORAM requests for each query is known in advance, the

requests are still executed sequentially. To address this inefficiency,

we have designed a way to combine the requests in a batch and

reduce the number of network requests to the bare minimum. We

have implemented this method over PathORAM, which we use for

the (𝜂1, 𝜂2)-ORAM protocol, but the idea applies to most tree-based

ORAMs (similar to [20]).

Our optimization utilizes the fact that all PathORAM leaf IDs

are known in advance and paths in a tree-based storage share the

buckets close to the root. The core idea is to read all paths first,

processes the requests and and then write all paths back. This way

the client makes a single read request, which is executed much

faster than many small requests. Requests are then processed in

main memory, including re-encryptions. Finally, the client executes

the write requests using remapped leaves as a single operation,

saving again compared to sequential execution.

This optimization provides up to 8 times performance boost in

our experiments. We note that the gains in speed and I/O overhead

are achieved at the expense of main memory, which is not an issue

given that the memory is released after a batch, and our exper-

iments confirm that. The security guarantees of PathORAM are

maintained with this optimization, since the security proof in [65,

Section 3.6] still holds. Randomized encryption, statistically inde-

pendent remapping of leaves, and stash processing do not change.

5.3.2 Lightweight ORAM servers. We have found in our experi-

ments that naïve increase of the number of CPU cores and gigabytes

of RAM does not translate into linear performance improvement

after some threshold. Investigating the observation we have found

that the Epsolute protocol, executing parallel ORAM protocols, is

highly intensivewith respect tomainmemory access, cryptographic

operations and network usage. The bottleneck is the hardware —

we have confirmed that on a single machine the RAM and network

are saturated quickly preventing the linear scaling.

To address the problem, we split the user party U into multi-

ple lightweight machines that are connected locally to each other

and reside in a single trust domain (e.g., same data center). Specifi-

cally, we maintain a client machine that receives user requests and

prepares ORAM read requests, and up to 𝑚 lightweight ORAM

machines, whose only job is to run the ORAM protocols in parallel.

See Fig. 2 for the schematic representation of the architecture. We
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ages18to 21

UntrustedserverpartySTrusteduserpartyU

User

4 ORAM requests:
ORAM IDs
Block IDs

2 True indices

LightweightORAM
machine
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3 Computing the amount of noise
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Figure 2: Lightweight ORAM machines diagram. A user sends a
query to U modeled as the client machine, which uses local data
index and DP structures to prepare a set of ORAM requests, which
are sent to respective ORAMmachines. These machines execute the
ORAM protocol against the untrusted storage of S.

emphasize that U is still a single party, therefore, the security and

correctness guarantees remain valid.

The benefit of this approach is that each of the lightweight

machines has its own hardware stack. Communication overhead

among U machines is negligible compared to the one between U

and S. The approach is also flexible: it is possible to use up to𝑚

ORAM machines and the machines do not have to be identical. Our

experiments show that when the same number of CPU cores and

amount of RAM are consumed the efficiency gain is up to 5 times.

6 EXPERIMENTAL EVALUATION
We have implemented our solution as a modular client-server ap-

plication in C++. We open-sourced all components of the software

set: PathORAM [14] and B+ tree [11] implementations and the

main query executor [12]. We provide PathORAM and B+ tree com-

ponents as C++ libraries to be used in other projects; the code is

documented, benchmarked and tested (228 tests covering 100 % of

the code). We have also published our datasets and query sets [13].

For cryptographic primitives, we used OpenSSL library (version

1.1.1i). For symmetric encryption in ORAMwe have used AES-CBC

algorithm [26, 27] with a 256-bits key (i.e., 𝜂2 = 2
−256

), for the hash

algorithm H used to partition records among ORAMs we have used

SHA-256 algorithm [52]. Aggregate tree fanout 𝑘 is 16, proven to

be optimal in [58].

We designed our experiments to answer the following questions:

Question-1 How practical is our system compared to the most

efficient and most private real-world solutions?

Question-2 How practical is the storage overhead?

Question-3 How different inputs and parameters of the system

affect its performance?

Question-4 How well does the system scale?

Question-5 What improvements do our optimizations provide?

Question-6 What is the impact of supporting multiple attributes?
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To address Question-1 we have run the default setting using

conventional RDBMS (MySQL and PostgreSQL), Linear Scan ap-

proach and Shrinkwrap [5]. To target Question-2, we measured

the exact storage used by the client and the server for different data,

record and domain sizes. To answer Question-3, we ran a default

setting and then varied all parameters and inputs, one at a time. For

Question-4 we gradually added vCPUs, ORAM servers and KVS

instances and observed the rate of improvement in performance.

For Question-5 we have run the default setting with our optimiza-

tions toggled. Lastly, for Question-6 we have used two datasets to

construct two indices and then queried each of the attributes.

6.1 Data sets
We used two real and one synthetic datasets — California public pay

pension database 2019 [67] (referred to as “CA employees”), Public

Use Microdata Sample from US Census 2018 [68] (referred to as

“PUMS”) and synthetic uniform dataset.We have used salary /wages

columns of the real datasets, and the numbers in the uniform set

also represent salaries. The NULL and empty values were dropped.

We created three versions of each dataset — 10
5
, 10

6
and 10

7

records each. For uniform dataset, we simply generated the target

number of entries. For PUMS dataset, we picked the states whose

number of records most closely matches the target sizes (Louisiana

for 10
5
, California for 10

6
and the entire US for 10

7
). Uniform dataset

was also generated for different domain sizes — number of distinct

values for the record. For CA employees dataset, the set contains

260 277 records, so we contracted it and expanded in the following

way. For contraction we uniformly randomly sampled 10
5
records.

For expansion, we computed the histogram of the original dataset

and sampled values uniformly within the bins.

Each of the datasets has a number of corresponding query sets.

Each query set has a selectivity or range size, and is sampled either

uniformly or following the dataset distribution (using its CDF).

6.2 Default setting
The default setting uses the Π𝛾 from Section 5 and lightweight

ORAM machines from Section 5.3.2 and Fig. 2. We choose the Π𝛾

because it outperforms Πno−𝛾 in all experiments (see Question-4
in Section 6.5). In the setting, there are 64 Redis services (8 ser-

vices per one Redis server VM), 8 ORAM machines communicating

with 8 Redis services each, and the client, which communicates

with these 8 ORAM machines. We have empirically found this con-

figuration optimal for the compute nodes and network that we

used in the experiments. ORAM and Redis servers run on GCP

n1-standard-16 VMs (Ubuntu 18.04), in regions us-east4 and

us-east1 respectively. Client machine runs n1-highmem-16 VM

in the same region as ORAM machines. The ping time between the

regions (i.e. between trusted and untrusted zones) is 12ms and the

effective bandwidth is 150MB/s. Ping within a region is negligible.

Default DP parameters are 𝜖 = ln(2) ≈ 0.693 and 𝛽 = 2
−20

,

which are consistent with the other DP applications proposed in

the literature [38]. Buckets number is set as the largest power of

𝑘 = 16 that is no greater than the domain of the dataset 𝑁 .

Default dataset is a uniform dataset of 10
6
records with domain

size 10
4
, and uniformly sampled queries with selectivity 0.5 %. De-

fault record size is 4 KiB.

6.3 Experiment stages
Each experiment includes running 100 queries such that the over-

head is measured from loading query endpoints into memory to

receiving the exact and whole query response from all ORAM ma-

chines. The output of an experiment is, among other things, the

overhead (in milliseconds), the number of real and noisy records

fetched and communication volume averaged per query.

6.4 RDBMS, Linear Scan and Shrinkwrap
On top of varying the parameters, we have run similar workloads

using alternative mechanisms — extremes representing highest

performance or highest privacy. Unless stated otherwise, the client

and the server are in the trusted and untrusted regions respectively,

with the network configuration as in Section 6.2.

Relational databases. Conventional RDBMS represents the most

efficient and least private and secure solution in our set. While

MySQL and PostgreSQL offer some encryption options and no

differential privacy, for our experiments we turned off security

features for maximal performance. We have run queries against

MySQL and PostgreSQL varying data and record sizes. We used

n1-standard-32 GCP VMs in us-east1 region, running MySQL

version 14.14 and PostgreSQL version 10.14.

Linear Scan. Linear scan is a primitive mechanism that keeps all

records encrypted on the server then downloads, decrypts and

scans the entire database to answer every query. This method is

trivially correct, private and secure, albeit not very efficient. There

are RDBMS solutions, which, when configured for maximum pri-

vacy, exhibit linear scan behavior (e.g., MS-SQL Always Encrypted

with Randomized Encryption [48] and Oracle Column Transparent

Data Encryption [53]). For a fair comparison we make the linear

scan even more efficient by allowing it to download data via parallel

threads matching the number of threads and bytes per request to

that of our solution. Although linear scan is wasteful in the amount

of data it downloads and processes, compared to our solution it has

a benefit of not executing an ORAM protocol with its logarithmic

overhead and network communication in both directions.

Shrinkwrap. Shrinkwrap [5] is a construction that answers feder-

ated SQL queries hiding both access pattern and communication

volume. Using the EMP toolkit [71] and the code Shrinkwrap au-

thors sharedwith us, we implemented a prototype that only answers

range queries. This part of Shrinkwrap amounts to making a scan

over the input marking the records satisfying the range, sorting the

input, and then revealing the result set plus DP noise to the client.

For the latter part we have adapted Shrinkwrap’s Truncated Laplace

Mechanism [5, Definition 4] to hierarchical method [58] in order

to be able to answer an unbounded number of all possible range

queries. We have emulated the outsourced database setting by using

two n1-standard-32 servers in different regions (12ms ping and

150MB/s bandwidth) executing the algorithm in a circuit model

(the faster option per Shrinkwrap experiments) and then revealing

the result to the trusted client. We note that although the complex-

ity of a Shrinkwrap query is O(𝑛 log𝑛) due to the sorting step, its

functionality is richer as it supports more relational operators, like

JOIN, GROUP BY and aggregation. We also note that since MySQL,
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PostgreSQL and Shrinkwrap are not parallelized within the query,

experiments using more CPUs do not yield higher performance.

6.5 Results and Observations
After running the experiments, we have made the following obser-

vations. Note that we report results based on the default setting.

• Epsolute is efficient compared to a strawman approach, RDBMS

and Shrinkwrap: it is three orders of magnitude faster than

Shrinkwrap, 18 times faster than the scan and only 4–8 times

slower than a conventional database. In fact, for different queries,

datasets, and record sizes, our system is much faster than the

linear scan, as we show next.

• Epsolute’s client storage requirements are very practical: client

size is just below 30MB while the size of the offloaded data is

over 400 times larger.

• Epsolute scales predictably with the change in its parameters:

data size affects performance logarithmically, record size — lin-

early, and privacy budget 𝜖 — exponentially.

• Epsolute is scalable: using Π𝛾 with the lightweight ORAM ma-

chines, the increase in the number of threads translates into linear

performance boost.

• The optimizations proposed in Section 5.3 provide up to an order

of magnitude performance gain.

• Epsolute efficiently supports multiple indexed attributes. The

overhead and the client storage increase slightly due to a lower

privacy budget and extra local indices.

For the purposes of reproducibility we have put the log traces of

all our experiments along with the instructions on how to run them

on a publicly available page epsolute.org. Unless stated otherwise,

the scale in the figures is linear and the 𝑥-axis is categorical.

Figure 3: Different range-query mechanisms (log scale). Default set-
ting: 106 4 KiB uniformly-sampled records with the range 104.

Question-1: against RDBMS, Linear Scan and Shrinkwrap.
The first experiment we have run using Epsolute is the default

setting in which we observed the query overhead of 840ms. To put
this number in perspective, we compare Epsolute to conventional

relational databases, the linear scan and Shrinkwrap.

For the default setting, MySQL and PostgreSQL, configured for

no privacy and maximum performance, complete in 97ms and

220ms respectively, which is just 8 to 4 times faster than Epsolute,
see Fig. 3. Conventional RDBMS uses efficient indices (B+ trees) to

locate requested records and sends them over without noise and

encryption, and it does so using less hardware resources. In our

experiments RDBMS performance is linearly correlated with the

result and record sizes.

Figure 4: Linear scan performance, logarithmic scale. The experi-
ments are run for the default setting of 106 records of size 4 KiB and
64 threads, with one of the three parameters varying.

Linear scan experiments demonstrate the practicality of Epsolute
compared to a trivial “download everything every time” approach,

see Fig. 4. Linear scan’s overhead is O(𝑛) regardless of the queries,
while Epsolute’s overhead is O(log𝑛) times the result size. Accord-

ing to our experiments, Epsolute eclipses the linear scan at 4 KiB, 64
threads and only ten thousand records (both mechanisms complete

in about 120ms). For a default setting (at a million records), the

difference is 18 times, see Fig. 4.
Because Shrinkwrap sorts the input obliviously in a circuit model,

it incurs O(𝑛 log𝑛) comparisons, each resulting in multiple circuit

gates, which is much more expensive than the linear scan. Unlike

linear scan, however, Shrinkwrap does not require much client

memory as the client merely coordinates the query. While Shrink-

wrap supports richer set of relational operators, for range queries

alone Epsolute is three orders of magnitude faster.

𝑛

Record

1 KiB 4KiB 16 KiB

10
5

400 KiB 400 B 400 KiB 102 KiB 400 KiB 1.6MB

396MB 4.6MB 1.5GB 14MB 6.2GB 51MB

10
6

3.9MB 400 B 3.9MB 102KiB 3.9MB 1.6MB

3.2GB 15MB 12GB 25MB 48GB 62MB

10
7

40MB 400 B 40MB 102KiB 40MB 1.6MB

24GB 99MB 96GB 109MB 384GB 146MB

𝑛

𝑁
100 10

4
10

6

Table 1: Storage usage for varying data, record and domain sizes.
The values are as follows. Left top: index I (B+ tree), right top: ag-
gregate tree DS, right bottom: ORAMU state and left bottom (bold):
ORAM S state. Italic indicates that the value is estimated.

Question-2: storage. While Epsolute storage efficiency is near-

optimal (O(1), 0), it is important to observe the absolute values.

Index I is implemented as a B+ tree with fanout 200 and occupancy

70 %, and its size, therefore, is roughly 5.7𝑛 bytes. Most of the ORAM

client storage is the PathORAM stash with its size chosen in a way

to bound failure probability to about 𝜂1 = 2
−32

(see [65, Theorem

1]). In Table 1, we present Epsolute storage usage for the parameters

https://epsolute.org
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that affect it — data, record and domain sizes. We measured the

sizes of the index I, DP structureDS, and ORAM client and server

states. Our observations are: (i) index size expectedly grows only

with the data size, (ii) DS is negligibly small in practice, (iii) small

I andDS sizes imply the efficiency of supporting multiple indexed

attributes, (iv) S toU storage size ratio varies from 85 in the smallest

setting to more than 2 000 in the largest, and (v) one can trade client
storage for ORAM failure probability. We conclude that the storage

requirements of Epsolute are practical.

Figure 5: Privacy budget 𝜖 Figure 6: Effect of 𝜖

Question-3: varying parameters. To measure and understand

the impact of configuration parameters on the performance of our

solution we have varied 𝜖 , record size, data size 𝑛, domain size 𝑁 ,

selectivities, as well as data and query distributions. The relation

that is persistent throughout the experiments is that for given data

and record sizes, the performance (the time to completely execute

a query) is strictly proportional to the total number of records, fake

and real, that are being accessed per query. Each record access

goes through the ORAM protocol, which, in turn, downloads, re-

encrypts and uploads O(log𝑛) blocks. These accesses contribute
the most to the overhead and all other stages (e.g., traversing index

or aggregate tree) are negligible.

Privacy budget 𝜖 and its effect. We have run the default setting

for 𝜖 = {0.1, 0.5, ln 2, 1.0, ln 3}. 𝜖 strictly contributes to the amount

of noise, which grows exponentially as 𝜖 decreases, see Fig. 5, ob-

serve sharp drop. As visualized on Fig. 6, at high 𝜖 values the noise

contributes a fraction of total overhead, while at low values the

noise dominates the overhead entirely.

Figure 7: Selectivity

Selectivity. Wehave ranged the selectivity from 0.1 % to 2 % of the

total number of records, see Fig. 7. Overhead expectedly grows with

the result size. For smaller queries, and thus for lower overhead, the

relation is positive, but not strictly proportional. This phenomena,

observed for the experiments with low resulting per-query time,

is explained by the variance among parallel threads. During each

query the work is parallelized over 𝑚 ORAMs and the query is

completed when the last thread finishes. The problem, in distributed

systems known as “the curse of the last reducer” [66], is when one

thread takes disproportionally long to finish. In our case, we run

64 threads in default setting, and the delay is usually caused by a

variety of factors — blocking I/O, network delay or something else

running on a shared vCPU. This effect is noticeable when a single

thread does relatively little work and small disruptions actually

matter; the effect is negligible for large queries.

Figure 8: Record size Figure 9: Data size Figure 10: Domain size

Record, data and domain sizes. We have tried 1 KiB, 4 KiB and

16 KiB records, see Fig. 8. Trivially, the elapsed time is directly

proportional to the record size.

We set 𝑛 to 10
5
, 10

6
and 10

7
, see Fig. 9. The observed correlation

of overhead against the data size is positive but non-linear, 10 times

increment in 𝑛 results in less than 10 times increase in time. This is

explained by the ORAM overhead — when 𝑛 changes, the ORAM

storage gets bigger and its overhead is logarithmic.

For synthetic datasets we have set 𝑁 to 100, 10
4
and 10

6
, see

Fig. 10. The results for domain size correlation are more interesting:

low and high values deliver worse performance than the middle

value. Small domain for a large data set means that a query often

results in a high number of real records, which implies significant

latency regardless of noise parameters. A sparse dataset, on the

other hand, means that for a given selectivity wider domain is

covered per query, resulting in more nodes in the aggregate tree

contributing to the total noise value.

Figure 11: Data distribution Figure 12: Query distribution

Data and query distributions. Our solution performs best on the

uniform data and uniform ranges, see Figs. 11 and 12. Once a skew

of any kind is introduced, there appear sparse and dense regions

that contribute more overhead than uniform regions. Sparse regions

span over wider range for a given selectivity, which results in more
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noise. Dense regions are likely to include more records for a given

range size, which again results in more fetched records. Both real

datasets are heavily skewed towards smaller values as few people

have ultra-high salaries.

Figure 13: Scalability measurements for Π𝛾 and Πno−𝛾

Question-4: scalability. Horizontal scaling is a necessity for a

practical system, this is the motivation for the parallelization in the

first place. Ideally, performance should improve proportionally to

the parallelization factor, number of ORAMs in our case,𝑚.

For scalability experiments we run the default setting for both

Πno−𝛾 and Π𝛾 (no-𝛾-method and 𝛾-method respectively) varying

the number of ORAMs 𝑚, from 8 to 96 (maximum vCPUs on a

GCP VM). The results are visualized on Fig. 13. We report two

positive observations: (i) the 𝛾-method provides substantially better

performance and storage efficiency, and (ii) when using this method

the system scales linearly with the number of ORAMs. (𝑚 = 96 is a

special case because some ORAMs had to share a single KVS.)

Improvement (section) Enabled Disabled Boost

ORAM batching (5.3.1) 840ms 6 978ms 8.3x
Lightweight ORAM machines (5.3.2) 840ms 4 484ms 5.3x
Both improvements 840ms 8 417ms 10.0x

Table 2: Improvements over parallel Epsolute

Question-5: optimizations benefits. Table 2 demonstrates the

boosts our improvements provide; when combined, the speedup is

up to an order of magnitude.

ORAM request batching (Section 5.3.1) makes the biggest dif-

ference. We have run the default setting with and without the

batching. The overhead is substantially smaller because far fewer

I/O requests are being made, which implies benefits across the full

stack: download, re-encryption and upload.

Using lightweight ORAMmachines (Section 5.3.2) makes a differ-

ence when scaling. In the default setting, 64 parallel threads quickly

saturate the memory access and network channel, while spreading

computation among nodes removes the bottleneck.

Question-6: multiple attributes. Epsolute supports multiple in-

dexed attributes. In Section 4.4 we described that the performance

implications amount to having an index I and a DP structure DS
per attribute and sharing the privacy budget 𝜖 among all attributes.

As shown in Table 1, I and DS are the smallest components of

the client storage. To observe the query performance impact, we

have used the default dataset with domains 10
4
and 10

6
as indexed

Figure 14: Query overhead when using multiple attributes. Only A
and Only B index one attribute. A and B indexes both attributes and
then queries one of them. Alternating indexes both attributes and
runs half of the queries against A and another half against B.

attributes A and B respectively. We ran queries against only A, only

B and against both attributes in alternating fashion. Each of the

attributes used 𝜖 = ln 2

2
to match the default privacy budget of ln(2).

Fig. 14 demonstrates the query overhead of supporting multiple

attributes. The principal observation is that the overhead increases

only slightly due to a lower privacy budget. The client storage went

up by just 9MB, and still constitutes only 3.3 % of the server storage,

which is not affected by the number of indexed attributes.

7 CONCLUSION AND FUTUREWORK
In this paper, we present a system called Epsolute that can be used

to store and retrieve encrypted records in the cloud while providing

strong and provable security guarantees, and that exhibits excellent

query performance for range and point queries. We use an opti-

mized Oblivious RAM protocol that has been parallelized together

with very efficient Differentially Private sanitizers that hide both

the access patterns and the exact communication volume sizes and

can withstand advanced attacks that have been recently developed.

We provide a prototype of the system and present an extensive

evaluation over very large and diverse datasets and workloads that

show excellent performance for the given security guarantees.

In our future work, we plan to investigate methods to extend

our approaches to use a trusted execution environment (TEE), like

SGX, in order to improve the performance even further. We will

also explore a multi-user setting without the need for a shared

stateful client, and enabling dynamic workloads with insertions

and updates. We will also consider how adaptive and non-adaptive

security models would change in the case of dynamic environments.

One would presumably also require DP of the server’s view in this

setting. Lastly, we plan to explore other relational operations like

JOIN and GROUP BY.
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