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Motivation and overview

- With vast amounts of data, organizations choose to use cloud solutions
- These solutions need to be both efficient and secure

- Recent attacks on access pattern (AP) [19, 27, 30, 33, 40, 51, 48, 20, 55] and communication
volume (CV) [40, 70, 55, 54, 63]

- Existing solutions may be insufficient:

- protection against snapshot adversary does not account for AP and CV
CryptDB [17], Arx [66], Seabed [43] and SisoSPIR [39]

- enclaves like SGX are still uncommon and limited in memory
Cipherbase [23], HardIDX [47], StealthDB [67], EnclaveDB [57], ObliDB [62], Opaque [49] and Oblix [56]

- other solutions protect either from one of AP or CV, or use linear scan and full padding
Crypte [72], Shrinkwrap [50], SEAL [69] and PINED-RQ [58]

- Epsolute [73]: most secure and practical range- and point-query engine in the outsourced
database model, that protects both AP and CV using Differential Privacy, while not relying
on TEE, linear scan or full padding




Cryptographic primitives

Symmetric Encryption Scheme

Key generation k<—sE.KEYGEN ()
Encrypt c<sEENC(X,R)
Decrypt X < E.DEC(C, R)

For example, AES [5] in CBC mode + IV [4].




Cryptographic primitives

Symmetric Encryption Scheme Order-revealing encryption scheme
Key generation k<—sE.KEYGEN () Key generation k<—sORE.KEYGEN ()
Encrypt c<sEENC(X,R) Encrypt C<sORE.ENC(x,R)
Decrypt X < E.DEC(C, R) Decrypt X <— ORE.DEC(C, R)
Compare C10p C; =X 0P Xy

ope{<,<,=2>,>}

For example, AES [5] in CBC mode + IV [4]. For example, BCLO [13], CLWW [35],
Lewi-Wu [41], CLOZ [52] and FH-OPE [32].




Access pattern and ORAM

Access pattern is a sequence of memory accesses y, where each access consists of the memory
location o, read r or write w operation and the data d to be written.

Oblivious RAM (ORAM) is a mechanism that hides the accesses pattern. More formally, ORAM is
a protocol between the client € (who accesses) and the server § (who stores), with a guarantee
that the view of the server is indistinguishable for any two sequences of the same lengths.

ORAM protocol
1: Client @ Server 8

2. Y= (r7i7J—)|i5:'|

Vil = [y2|
VIEWs(Y1) ~ VIEWs(Y>)

5 (client state) ORAM (y) (server state)

41 {dh, dy, d3, dy, ds}

For example: Square Root ORAM [1], Hierarchical ORAM [2], Binary-Tree ORAM [18], Interleave
Buffer Shuffle Square Root ORAM [46], TP-ORAM [21], Path-ORAM [26] and TaORAM [45]. ORAM
incurs at least logarithmic overhead in the number of stored records. [2]




k-anonymity [6]

Every tuple in the released table must be indistinguishably related to no fewer than k respon-
dents (i.e., similar to at lest k — 1 other tuples).

- only with respect to quasi-identifiers
- attacks using background knowledge and lack of diversity
- a property of a table, not a mechanism (other works with anonymization techniques exist)
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(-diversity [12]

A block is ¢-diverse if it contains at least £ “well-represented” values for the sensitive attribute
S. Atable is ¢-diverse if every block is ¢-diverse.

Can choose definition of “well-represented”. For example, in entropy ¢-diversity, every block has
at least ¢ distinct values for the sensitive attribute. In recursive ¢-diversity, most common value
does not appear too often, less common — not too infrequently.




t-closeness [11]

A block exhibits t-closeness if the distance between the distributions of a sensitive attribute in
this block and in the whole table is no more than a threshold t. A table exhibits t-closeness if
every block does. The metric used is the Earth Mover’s Distance [3].




t-closeness [11]

A block exhibits t-closeness if the distance between the distributions of a sensitive attribute in
this block and in the whole table is no more than a threshold t. A table exhibits t-closeness if
every block does. The metric used is the Earth Mover’s Distance [3].

Differential Privacy, adapted from [10, 9]

A randomized algorithm A is (e, 0)-differentially private if for all D; ~ D, € X", and for all
subsets O of the output space of A,

PrIA(D:) € O] < exp(e) - PrA(Dy) € O] +6 .

- Laplace Perturbation Algorithm (LPA) [9, Theorem 1]
- Differentially Private Sanitizer
- Composition Theorem (disjoint and non-disjoint sets)




Encalves, SGX and ZeroTrace

Software Guard Extensions (SGX) [22, 24, 25, 31, 37]

Features: Issues:
- Set of new x86 instructions . Small ~ 96 MB of “trusted”
- Virtual isolation within “enclaves” memory
- The entire non-enclave stack is untrusted - Enclave code is significantly
- Can swap/re-encrypt pages from RAM slower
- Application declares enclave and non-enclave parts - No direct I/0O or syscalls
- Enclave should manipulate sensitive data, e.g, keys  * Leaks access pattern

ZeroTrace [59]

PathORAM [26] or CircuitORAM [34] in SGX, given that the enclave code leaks access pattern.
Uses oblivious operations.




MODEL
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Snapshot adversary / Data-at-rest

Adversary steals the hard drive Attacks
- Cannot query fully encrypted blob - Usually require auxillary knowledge
cannot outsource key e.g., distribution
- Download-decrypt-query is inefficient - Not necessarily “full” reconstruction

- Relaxing from absolute (semantic) security - Lots of attacks [33, 51, 48, 65]
- Searchable symmetric encryption (SSE) [8]

- Fully-homomorphic encryption (FHE) [15]

- Functional Encryption [16]

- Property-preserving encryption (PPE) [7, 29]
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Persistent adversary / AP and CV leakage

Access Pattern Communication Volume
- Which query “touches” which records - The size of the answer (in bytes or records)
- Applicable to all types of queries - More often applicable to range queries
- Usually mitigated with ORAM - Usually mitigated with padding / noise
- Attacks [19, 27, 30, 33, 40, 51, 48, 20, 55] - Attacks [40, 70, 55, 54, 63]

Can we put forth a definition that would imply protection against all these attacks?




Differentially Private Outsourced Database System

Definition (Computationally Differentially Private Outsourced Database System (CDP-ODB))

We say that an outsourced database system I is (e, d)-computationally differentially private
(a.k.a. CDP-ODB) if for every polynomial time distinguishing adversary A, for every neighboring
databases D ~ D/, and for every query sequence qs,...,qm € Q™ where m = poly()),

PrA (1, VIEWns (D, qr, - .., qm)) = 1] <
expe- Pr[A (1 VIEWns (D', qr,....Gm)) = 1] + 6 + negl(N) ,

the probability is over the randomness of the distinguishing adversary A and the protocol IN.




Differentially Private Outsourced Database System

Definition (Computationally Differentially Private Outsourced Database System (CDP-ODB))

We say that an outsourced database system I is (e, d)-computationally differentially private
(a.k.a. CDP-ODB) if for every polynomial time distinguishing adversary A, for every neighboring
databases D ~ D/, and for every query sequence qs,...,qm € Q™ where m = poly()),

PrA (1 VIEWns (D, qr,-...qm)) =1] <
expe- PrA (1 VIEWns (D', q1, -, Gm)) = 1] + 6 + negl()) ,
the probability is over the randomness of the distinguishing adversary A and the protocol IN.
Note:

- Entire view of the adversary is DP-protected

- Implies protection against communication volume and access pattern leakages

- Query sequence gq,...,qm € QM is fixed

- negl()\) accounts for the computational (as opposed to theoretical) DP definition
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Survey of OPE/ORE schemes [ (]

The problem
- Many different solutions
- Performance / security tradeoff

- Heterogeneous security definitions and
leakage profiles

- Performance of the schemes not well-
understood

- Some were not even implemented

- Prototype implementation at best

- Not benchmarked against one another

- Use different primitive implementations
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- Many different solutions
- Performance / security tradeoff

- Heterogeneous security definitions and
leakage profiles

- Performance of the schemes not well-
understood

- Some were not even implemented

- Prototype implementation at best

- Not benchmarked against one another

- Use different primitive implementations

Our solution
- Analyzed security and leakages of the con-

structions under a common framework

- Analyzed theoretically performance of the

constructions

- Implemented and run experiments

- Implemented 5 OPE / ORE schemes and 5
range query protocols

- Used same language, framework and
primitive implementations

- Benchmarked primitives execution times

- Counted primitives and I/0 usage

Survey of OPE/ORE schemes [ (]

The problem
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Survey of OPE/ORE schemes [ (]

OPE/ORE schemes + leakage Range query protocols + leakage (on top of AP and CV)

- BCLO [14] - B+ tree with ORE
~ top half of the bits same as underlying ORE

- CLWW [36] - Kerschbaum [64]
most-significant differing bit total order

- Lewi-Wu [42] - POPE [44]
most-significant differing block partial order

- CLOZ [53] - Logarithmic-BRC [38]
equality pattern of most-significant dif- same as underlying SSE
fering bit - ORAM with B+ tree

- FH-OPE [32] fully hiding

insertion order

M




CryptDB [ ]

CryptDB design and contributions Issues
- Regular SQL API for applications - Once onion level is removed, se-
- Proxy between app and server rewrites queries curity degradation is permanent
- Encryption depending on operations - Leakage
* OPE for comparison - Order and histogram

 DET for equality
+ HE for aggregates
* RND if value is never used

- Access pattern
- Communication volume

- Records encrypted in onion layers
- Column key derives from user password

12




Arx [~©], PPQED [ "] and SisoSPIR [ “]

Arx [66]
- A proxy between app and MongoDB
- Uses only semantically secure encryption

- Innovative range index with garbled circuits
has to “rebuild” circuits

- Equality index inspired by SSE

- Almost no leakage for snapshot adversary
- Requires schema and queries in advance
- Leaks AP and CV
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Arx [66] PPQED [28]
- A proxy between app and MongoDB - Securely evaluate DNF of predicates
- Uses only semantically secure encryption - Two non-colluding servers, one has keys

- Requires schema and queries in advance _
- B+ tree stored in ORAM layer-by-layer
- Leaks AP and CV

- Innovative range index with garbled circuits - Uses garbled circuits or HE

has to “rebuild” circuits - Slow, leaks CV and (apparently) AP

- Equality index inspired by SSE
- Almost no leakage for snapshot adversary

SisoSPIR [39]
- Three parties, at most one corrupted

- Neither party sees the exact search path
- Claim protection against CV and AP

13



WORK IN THE AREA

ACCESS PATTERN AND/OR COMMUNICATION
VOLUME



Crypte[ ]

Crypte [72] design and contributions

- Executes entire “DP programs”
transformations followed by the measurement

- Non-colluding analyst and crypto server
- Crypto server

- decrypts

- keeps privacy budget ¢

- adds Laplacian noise
- Analyst processes transformations

* project
* Cross product
- filter

- Experiments cover 7 “heavy” programs

Issues
- Adversary can observe both servers

- Malicious server defense requires TEE
- Not clear about the privacy of an individual
- Cannot output the result of transformation,

program must end with a measurement
COUNT or CDF is OK, range query is not

- Very slow

typical program runs 3.6 hours even without network

14



Shrinkwrap [ (]

Shrinkwrap [50] design and contributions Issues
- Federated SQL queries (m owners) - O(nlogn) for n fully padded
- Pad and obliviously sort in circuit model + Pad and obliviously sort in circuit model
hides both AP and CV naive and performance is subpar
- “Shrink” to DP-sized chunk - Cannot run form > 2
- Optimal privacy budget allocation union-join across m owners is infeasible

- Much faster than fully oblivious - Takes hours per query on a local network

15




SEAL [ ], PINED-RQ [* ] and Foundations of Differentially Oblivious Algorithms [ ]

SEAL [69]
- SE Adjustable Leakage to the bit-level
- SE is based on Logarithmic-SRC-i [38]

- Adjustable ORAM hides « bits of AP
partition data into 55 ORAMs

- Adjustable padding hides x bits of CV

pad to the closest power of x
- New query protocols use SEAL as black-box

- Faster than scan, very slow in practice
even though no 1/0s, only RAM

16
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SEAL [ ], PINED-RQ [* ] and Foundations of Differentially Oblivious Algorithms [ ]

SEAL [69] PINED-RQ [58]
- SE Adjustable Leakage to the bit-level - B+ tree with already noisy records
- SE is based on Logarithmic-SRC-i [38] - May end up dropping real records
- Adjustable ORAM hides « bits of AP - Updates are limited and expensive
partition data into 7z ORAMs - Experimental evaluation is misleading

- Adjustable padding hides x bits of CV

Foundations of Differentially Oblivious
pad to the closest power of x

Algorithms [61]
- New definition, algorithms and bounds
- AP itself is a DP-protected statistics
- Weaker than full obliviousness

- New query protocols use SEAL as black-box

- Faster than scan, very slow in practice
even though no 1/0s, only RAM

16




WORK IN THE AREA

TRUSTED EXECUTION ENVIRONMENT /
ENCLAVES |/ SGX



Opaque [*~] and ObliDB [ ]

Opaque [49]

- Distributed analytics on top of Spark
supports filter, join, aggregation

- Requires truly oblivious memory
does not exist

- Encryption mode: security and integrity
most of it “for free” with SGX

- Oblivious mode: hiding AP

sort with bitonic, linear scan

- Padding mode: not filter out dummies

impractical

17




Opaque [*~] and ObliDB [ ]

Opaque [49] ObliDB [62]

- Distributed analytics on top of Spark - Requires truly oblivious memory
supports filter, join, aggregation - Choice of flat and indexed storage

- Requires truly oblivious memory - SELECT
does not exist - naive: ORAM over two tables

- Encryption mode: security and integrity - small: load to oblivious buffer
most of it *for free” with SGX - large: duplicates table, scans obliviously

- Oblivious mode: hiding AP - continuous: assumes table is sorted
sort with bitonic, linear scan - hash: put row into H () position

- Padding mode: not filter out dummies - AGGREGATE: running value in enclave
impractical - JOIN

- hash join: put hashes in enclave
- sort-merge join: sort chunk in SGX, merge
chunks with bitonic, filter with linear scan

17




Cipherbase [ ], StealthDB [ '], EnclaveDB [ '] and Hermetic [ ]

Cipherbase [23]
- Pre-SGX era, FPGA “trusted machine”
- Primitive operators executed in TEE
- No experiments or analysis
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EnclaveDB [57]
- Mostly integrity and freshness guarantees

- No AP or CV protection, side-channels out
of scope

- Assumes 192 GB of truly oblivious memory
- |deas:

- put entire mini-0OS in enclave
- compile queries to binaries

- No SGX In experiments, poor simulation
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Cipherbase [ ], StealthDB [ '], EnclaveDB [ '] and Hermetic [ ]

Cipherbase [23] StealthDB [67]

- Pre-SGX era, FPGA “trusted machine” - SGX extension over PostgreSQL

- Primitive operators executed in TEE - Bring components to SGX on-demand

- No experiments or analysis - Implementation is great: loadable module
EnclaveDB [57] Hermetic [68]

- Mostly integrity and freshness guarantees - Set of primitives against side-channels

- No AP or CV protection, side-channels out - Oblivious execution environment

of scope - always runs to completion
- Assumes 192 GB of truly oblivious memory - uses only cache lines
. Ideas: + data-oblivious

- put entire mini-0S in enclave * no side-effects

- compile queries to binaries -+ Assumes only software attacks

- No SGX in experiments, poor simulation - Not published yet

18




Oblix [ ], HybrIDX [ '] and HardIDX [ ']

Oblix [69]
- “Doubly-oblivious” data structures

- Doubly-oblivious sorted multimap
r top values to hide CV

- Doubly-oblivious PathORAM
somewhat better than ZeroTrace [59]

- Way to make “tree-like” structure oblivious

- Experiments only “estimate” performance
of doubly-oblivious ORAM
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Oblix [69] HybrIDX [71]
- “Doubly-oblivious” data structures - Range query index obfuscates CV and AP
- Doubly-oblivious sorted multimap - Does not consider AP leakage inside SGX
r top values to hide CV - CV is obfuscated with bucketization
+ Doubly-oblivious PathORAM - AP is obfuscated using cache

somewhat better than ZeroTrace [59]
- Way to make “tree-like” structure oblivious

- Experiments only “estimate” performance
of doubly-oblivious ORAM
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Oblix [ ], HybrIDX [ '] and HardIDX [ ']

Oblix [69] HybrIDX [71]
- “Doubly-oblivious” data structures - Range query index obfuscates CV and AP
- Doubly-oblivious sorted multimap - Does not consider AP leakage inside SGX
r top values to hide CV - CV is obfuscated with bucketization
- Doubly-oblivious PathORAM - AP is obfuscated using cache

somewhat better than ZeroTrace [59]

HardIDX [47]

- Way to make “tree-like” structure oblivious
- B+ tree put directly in enclave

- Experiments only “estimate” performance
of doubly-oblivious ORAM - AP and CV are not even considered

19




EPSOLUTE




Single-Threaded Epsolute

O
Server o @ User Search key Record ID

Q
o 0 o O——t—noise Salary $40K | IDs 56, 46, 89
Salary $50K |IDs 85, 38, 63

- 30303 0d0
OOO000O0OOOOOOOOO0O

DP tree (range queries)
~ <«——ORAM read requests—|

ORAM DP hisotgram —noise_f Client
Server Storage (point queries)

Record index

Query:
“Salaries $40K-$50K"

User

20




Parallel Epsolute diagram (with improvements)

Trusted user party U Untrusted server party S

3 Computing the amount of noise | g [— pt—

<42 True indices DP histogram  DP tree

5 ORAM GET

Client 4 ORAM requests: | - J
ORAM IDs . | \‘
> 6 prunning Block IDs

fake records 5 ORAM GET,
Lightweight ORAM
T 0 machine
Application I
1
| |
| 1 C /\:
I G | 5 ORAM GET
| ages 18 to 21 ! - J
1
[ I -
I > |
I ! 5 ORAM GET
: User ! Lightweight ORAM
| .
i | rnachme KVS Store
e e e e e e e e e e e e e e e e, —mE—m—m— -
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