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Motivation and overview

• With vast amounts of data, organizations choose to use cloud solutions
• These solutions need to be both efficient and secure
• Recent attacks on access pattern (AP) [19, 27, 30, 33, 40, 51, 48, 20, 55] and communication
volume (CV) [40, 70, 55, 54, 63]

• Existing solutions may be insufficient:
• protection against snapshot adversary does not account for AP and CV
CryptDB [17], Arx [66], Seabed [43] and SisoSPIR [39]

• enclaves like SGX are still uncommon and limited in memory
Cipherbase [23], HardIDX [47], StealthDB [67], EnclaveDB [57], ObliDB [62], Opaque [49] and Oblix [56]

• other solutions protect either from one of AP or CV, or use linear scan and full padding
Cryptϵ [72], Shrinkwrap [50], SEAL [69] and PINED-RQ [58]

• Epsolute [73]: most secure and practical range- and point-query engine in the outsourced
database model, that protects both AP and CV using Differential Privacy, while not relying
on TEE, linear scan or full padding
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Cryptographic primitives

Symmetric Encryption Scheme

Key generation k←$ E.KEYGEN ()
Encrypt c←$ E.ENC (x, k)
Decrypt x← E.DEC (c, k)

Order-revealing encryption scheme

Key generation k←$ORE.KEYGEN ()
Encrypt c←$ORE.ENC (x, k)
Decrypt x← ORE.DEC (c, k)
Compare c1 op c2 ≡ x1 op x2

op ∈ {<,≤,=,≥, >}

For example, AES [5] in CBC mode + IV [4]. For example, BCLO [13], CLWW [35],
Lewi-Wu [41], CLOZ [52] and FH-OPE [32].
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Access pattern and ORAM

Access pattern is a sequence of memory accesses y, where each access consists of the memory
location o, read r or write w operation and the data d to be written.
Oblivious RAM (ORAM) is a mechanism that hides the accesses pattern. More formally, ORAM is
a protocol between the client C (who accesses) and the server S (who stores), with a guarantee
that the view of the server is indistinguishable for any two sequences of the same lengths.

|y1| = |y2|
VIEWS(y1) c≈ VIEWS(y2)

ORAM protocol
1 : Client C Server S
2 : y = (r, i,⊥)|5i=1

3 : (client state) ORAM (y) (server state)

4 : {d1,d2,d3,d4,d5}

For example: Square Root ORAM [1], Hierarchical ORAM [2], Binary-Tree ORAM [18], Interleave
Buffer Shuffle Square Root ORAM [46], TP-ORAM [21], Path-ORAM [26] and TaORAM [45]. ORAM
incurs at least logarithmic overhead in the number of stored records. [2]
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Privacy

k-anonymity [6]
Every tuple in the released table must be indistinguishably related to no fewer than k respon-
dents (i.e., similar to at lest k− 1 other tuples).
• only with respect to quasi-identifiers
• attacks using background knowledge and lack of diversity
• a property of a table, not a mechanism (other works with anonymization techniques exist)

ℓ-diversity [12]
A block is ℓ-diverse if it contains at least ℓ “well-represented” values for the sensitive attribute
S. A table is ℓ-diverse if every block is ℓ-diverse.
Can choose definition of “well-represented”. For example, in entropy ℓ-diversity, every block has
at least ℓ distinct values for the sensitive attribute. In recursive ℓ-diversity, most common value
does not appear too often, less common — not too infrequently.
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Privacy

t-closeness [11]
A block exhibits t-closeness if the distance between the distributions of a sensitive attribute in
this block and in the whole table is no more than a threshold t. A table exhibits t-closeness if
every block does. The metric used is the Earth Mover’s Distance [3].
Differential Privacy, adapted from [10, 9]
A randomized algorithm A is (ϵ, δ)-differentially private if for all D1 ∼ D2 ∈ X n, and for all
subsets O of the output space of A,

Pr [A (D1) ∈ O] ≤ exp(ϵ) · Pr [A (D2) ∈ O] + δ .

• Laplace Perturbation Algorithm (LPA) [9, Theorem 1]
• Differentially Private Sanitizer
• Composition Theorem (disjoint and non-disjoint sets)
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Encalves, SGX and ZeroTrace

Software Guard Extensions (SGX) [22, 24, 25, 31, 37]
Features:
• Set of new x86 instructions
• Virtual isolation within “enclaves”
• The entire non-enclave stack is untrusted
• Can swap/re-encrypt pages from RAM
• Application declares enclave and non-enclave parts
• Enclave should manipulate sensitive data, e.g., keys

Issues:
• Small ≈ 96MB of “trusted”
memory

• Enclave code is significantly
slower

• No direct I/O or syscalls
• Leaks access pattern

ZeroTrace [59]
PathORAM [26] or CircuitORAM [34] in SGX, given that the enclave code leaks access pattern.
Uses oblivious operations.
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Snapshot adversary / Data-at-rest

Adversary steals the hard drive
• Cannot query fully encrypted blob
cannot outsource key

• Download-decrypt-query is inefficient
• Relaxing from absolute (semantic) security
• Searchable symmetric encryption (SSE) [8]
• Fully-homomorphic encryption (FHE) [15]
• Functional Encryption [16]
• Property-preserving encryption (PPE) [7, 29]

Attacks
• Usually require auxillary knowledge
e.g., distribution

• Not necessarily “full” reconstruction
• Lots of attacks [33, 51, 48, 65]
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Persistent adversary / AP and CV leakage

Access Pattern
• Which query “touches” which records
• Applicable to all types of queries
• Usually mitigated with ORAM
• Attacks [19, 27, 30, 33, 40, 51, 48, 20, 55]

Communication Volume
• The size of the answer (in bytes or records)
• More often applicable to range queries
• Usually mitigated with padding / noise
• Attacks [40, 70, 55, 54, 63]

Can we put forth a definition that would imply protection against all these attacks?
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Differentially Private Outsourced Database System

Definition (Computationally Differentially Private Outsourced Database System (CDP-ODB))
We say that an outsourced database system Π is (ϵ, δ)-computationally differentially private
(a.k.a. CDP-ODB) if for every polynomial time distinguishing adversary A, for every neighboring
databases D ∼ D′, and for every query sequence q1, . . . ,qm ∈ Qm where m = poly(λ),

Pr [A (1λ, VIEWΠ,S (D,q1, . . . ,qm)
)
= 1] ≤
exp ϵ · Pr

[
A
(
1λ, VIEWΠ,S (D′,q1, . . . ,qm)

)
= 1

]
+ δ + negl(λ) ,

the probability is over the randomness of the distinguishing adversary A and the protocol Π.
Note:
• Entire view of the adversary is DP-protected
• Implies protection against communication volume and access pattern leakages
• Query sequence q1, . . . ,qm ∈ Qm is fixed
• negl(λ) accounts for the computational (as opposed to theoretical) DP definition
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Survey of OPE/ORE schemes [60]

The problem
• Many different solutions
• Performance / security tradeoff
• Heterogeneous security definitions and
leakage profiles

• Performance of the schemes not well-
understood
• Some were not even implemented
• Prototype implementation at best
• Not benchmarked against one another
• Use different primitive implementations

Our solution
• Analyzed security and leakages of the con-
structions under a common framework

• Analyzed theoretically performance of the
constructions

• Implemented and run experiments
• Implemented 5 OPE / ORE schemes and 5
range query protocols

• Used same language, framework and
primitive implementations

• Benchmarked primitives execution times
• Counted primitives and I/O usage

10



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

Survey of OPE/ORE schemes [60]

The problem
• Many different solutions
• Performance / security tradeoff
• Heterogeneous security definitions and
leakage profiles

• Performance of the schemes not well-
understood
• Some were not even implemented
• Prototype implementation at best
• Not benchmarked against one another
• Use different primitive implementations

Our solution
• Analyzed security and leakages of the con-
structions under a common framework

• Analyzed theoretically performance of the
constructions

• Implemented and run experiments
• Implemented 5 OPE / ORE schemes and 5
range query protocols

• Used same language, framework and
primitive implementations

• Benchmarked primitives execution times
• Counted primitives and I/O usage

10



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

Survey of OPE/ORE schemes [60]

OPE/ORE schemes + leakage
• BCLO [14]
≈ top half of the bits

• CLWW [36]
most-significant differing bit

• Lewi-Wu [42]
most-significant differing block

• CLOZ [53]
equality pattern of most-significant dif-
fering bit

• FH-OPE [32]
insertion order

Range query protocols + leakage (on top of AP and CV)
• B+ tree with ORE
same as underlying ORE

• Kerschbaum [64]
total order

• POPE [44]
partial order

• Logarithmic-BRC [38]
same as underlying SSE

• ORAM with B+ tree
fully hiding

11
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CryptDB [17]

CryptDB design and contributions
• Regular SQL API for applications
• Proxy between app and server rewrites queries
• Encryption depending on operations
• OPE for comparison
• DET for equality
• HE for aggregates
• RND if value is never used

• Records encrypted in onion layers
• Column key derives from user password

Issues
• Once onion level is removed, se-
curity degradation is permanent

• Leakage
• Order and histogram
• Access pattern
• Communication volume

12
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Arx [66], PPQED [28] and SisoSPIR [39]

Arx [66]
• A proxy between app and MongoDB
• Uses only semantically secure encryption
• Innovative range index with garbled circuits
has to “rebuild” circuits

• Equality index inspired by SSE
• Almost no leakage for snapshot adversary
• Requires schema and queries in advance
• Leaks AP and CV

PPQED [28]
• Securely evaluate DNF of predicates
• Two non-colluding servers, one has keys
• Uses garbled circuits or HE
• Slow, leaks CV and (apparently) AP

SisoSPIR [39]
• Three parties, at most one corrupted
• B+ tree stored in ORAM layer-by-layer
• Neither party sees the exact search path
• Claim protection against CV and AP

13
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VOLUME
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Cryptϵ [72]

Cryptϵ [72] design and contributions
• Executes entire “DP programs”
transformations followed by the measurement

• Non-colluding analyst and crypto server
• Crypto server
• decrypts
• keeps privacy budget ϵ
• adds Laplacian noise

• Analyst processes transformations
• project
• cross product
• filter

• Experiments cover 7 “heavy” programs

Issues
• Adversary can observe both servers
• Malicious server defense requires TEE
• Not clear about the privacy of an individual
• Cannot output the result of transformation,
program must end with a measurement
COUNT or CDF is OK, range query is not

• Very slow
typical program runs 3.6 hours even without network
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Shrinkwrap [50]

Shrinkwrap [50] design and contributions
• Federated SQL queries (m owners)
• Pad and obliviously sort in circuit model
hides both AP and CV

• “Shrink” to DP-sized chunk
• Optimal privacy budget allocation
• Much faster than fully oblivious

Issues
• O(n log n) for n fully padded
• Pad and obliviously sort in circuit model
naïve and performance is subpar

• Cannot run for m > 2
union-join across m owners is infeasible

• Takes hours per query on a local network
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SEAL [69], PINED-RQ [58] and Foundations of Differentially Oblivious Algorithms [61]

SEAL [69]
• SE Adjustable Leakage to the bit-level
• SE is based on Logarithmic-SRC-i [38]
• Adjustable ORAM hides α bits of AP
partition data into n

2α ORAMs
• Adjustable padding hides x bits of CV
pad to the closest power of x

• New query protocols use SEAL as black-box
• Faster than scan, very slow in practice
even though no I/Os, only RAM

PINED-RQ [58]
• B+ tree with already noisy records
• May end up dropping real records
• Updates are limited and expensive
• Experimental evaluation is misleading

Foundations of Differentially Oblivious
Algorithms [61]
• New definition, algorithms and bounds
• AP itself is a DP-protected statistics
• Weaker than full obliviousness
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Opaque [49] and ObliDB [62]

Opaque [49]
• Distributed analytics on top of Spark
supports filter, join, aggregation

• Requires truly oblivious memory
does not exist

• Encryption mode: security and integrity
most of it “for free” with SGX

• Oblivious mode: hiding AP
sort with bitonic, linear scan

• Padding mode: not filter out dummies
impractical

ObliDB [62]
• Requires truly oblivious memory
• Choice of flat and indexed storage
• SELECT
• naïve: ORAM over two tables
• small: load to oblivious buffer
• large: duplicates table, scans obliviously
• continuous: assumes table is sorted
• hash: put row into H (i) position

• AGGREGATE: running value in enclave
• JOIN
• hash join: put hashes in enclave
• sort-merge join: sort chunk in SGX, merge
chunks with bitonic, filter with linear scan
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Cipherbase [23], StealthDB [67], EnclaveDB [57] and Hermetic [68]

Cipherbase [23]
• Pre-SGX era, FPGA “trusted machine”
• Primitive operators executed in TEE
• No experiments or analysis

StealthDB [67]
• SGX extension over PostgreSQL
• Bring components to SGX on-demand
• Implementation is great: loadable module

EnclaveDB [57]
• Mostly integrity and freshness guarantees
• No AP or CV protection, side-channels out
of scope

• Assumes 192 GB of truly oblivious memory
• Ideas:
• put entire mini-OS in enclave
• compile queries to binaries

• No SGX in experiments, poor simulation

Hermetic [68]
• Set of primitives against side-channels
• Oblivious execution environment
• always runs to completion
• uses only cache lines
• data-oblivious
• no side-effects

• Assumes only software attacks
• Not published yet
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Oblix [69], HybrIDX [71] and HardIDX [47]

Oblix [69]
• “Doubly-oblivious” data structures
• Doubly-oblivious sorted multimap
r top values to hide CV

• Doubly-oblivious PathORAM
somewhat better than ZeroTrace [59]

• Way to make “tree-like” structure oblivious
• Experiments only “estimate” performance
of doubly-oblivious ORAM

HybrIDX [71]
• Range query index obfuscates CV and AP
• Does not consider AP leakage inside SGX
• CV is obfuscated with bucketization
• AP is obfuscated using cache

HardIDX [47]
• B+ tree put directly in enclave
• AP and CV are not even considered
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Single-Threaded Epsolute

Server User

User
ORAM

ServerStorage

Searchkey RecordID
Salary$40K IDs 56,46,89
Salary$50K IDs 85,38,63

... ...
Recordindex

Query:
“Salaries $40K–$50K"

ORAM read requests

ClientDPhisotgram
(point queries)

DPtree(rangequeries)

noise

noise
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Parallel Epsolute diagram (with improvements)

1Query:
ages18to 21

UntrustedserverpartySTrusteduserpartyU

User

4 ORAM requests:
ORAM IDs
Block IDs

2 True indices

LightweightORAM
machine

LightweightORAM
machine

KVS Store

KVS Store

KVS Store

KVS Store

3 Computing the amount of noise

5 ORAM GET requests

5 ORAM GET requests

5 ORAM GET requests

5 ORAM GET requests

DPhistogram

B+ tree

Application

DPtree

Client

6 prunning 
fake records
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