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ABSTRACT
Database query evaluation over encrypted data can allow
database users to maintain the privacy of their data while
outsourcing data processing. Order-Preserving Encryption
(OPE) and Order-Revealing Encryption (ORE) were de-
signed to enable efficient query execution, but provide only
partial privacy. More private protocols, based on Searchable
Symmetric Encryption (SSE), Oblivious RAM (ORAM) or
custom encrypted data structures, have also been designed.
In this paper, we develop a framework to provide the first
comprehensive comparison among a number of range query
protocols that ensure varying levels of privacy of user data.
We evaluate five ORE-based and five generic range query
protocols. We analyze and compare them both theoret-
ically and experimentally and measure their performance
over database indexing and query evaluation. We report
not only execution time but also I/O performance, commu-
nication amount, and usage of cryptographic primitive op-
erations. Our comparison reveals some interesting insights
concerning the relative security and performance of these
approaches in database settings.
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1. INTRODUCTION
Order-Preserving Encryption (OPE) was proposed by Ag-

rawal et al. [1] in their seminal paper. The main idea is to
“encrypt” numerical values into ciphertexts that have the
same order as the original plaintexts. This is a very useful
primitive since it allows a database system to make compar-
isons between chiphertexts and get the same results as if it
had operated on plaintexts. A scheme was proposed in [1]
but no security analysis was given.

Boldyreva et al. [8] were the first to treat OPE schemes
from a cryptographic point of view, providing security mod-
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els and rigorous analysis. The ideal functionality of such a
scheme is to leak only the order of the plaintexts and noth-
ing more. However, it was shown by Boldyreva et al. [8]
that the ideal functionality is not achievable if the scheme is
stateless and immutable. In order to achieve the ideal func-
tionality, Popa, Li, and Zeldovich [56] proposed a mutable
scheme that constructs a binary tree on plaintexts and uses
paths as ciphertexts. This tree is the encrypted full state of
the dataset, and once an insertion or a deletion rebalances
the tree, multiple ciphertexts get mutated. Kerschbaum [39]
proposed an improvement on this scheme that also hides the
frequency of each plaintext (how many times a given value
appears).

Furthermore, in order to improve the security of these
schemes, Boneh et al. [10] proposed to generalize OPE to Or-
der-Revealing Encryption (ORE). In ORE, ciphertexts have
no particular order and look more like typical semantically
secure encryptions. The database system has a special com-
parison function that can be used to compare two cipher-
texts. These schemes are more secure than OPE schemes,
although they still leak some information, and in general are
more expensive to compute. Since these schemes leak some
information, a number of recent works considered attacks
on systems that may use these schemes [31, 32, 53, 26, 38,
12, 22, 44, 4, 65]. Most of these attacks assume the attacker
possesses auxiliary information and no other protections are
available.

OPE / ORE schemes can be used with almost no changes
to the underlying database engine. To provide greater secu-
rity, a number of more complex protocols for protecting data
in outsourced databases have been proposed. These con-
structions are often interactive, rely on custom data struc-
tures and are optimized for certain tasks, such as range
queries. Naturally, the more secure the protocol is, the
larger performance overhead it incurs. The most secure of
these — Oblivious RAM (ORAM) based protocol — pro-
vides strong, well-understood, cryptographic privacy guar-
antees with no information leakage.

Applications that can benefit from such schemes and pro-
tocols include cloud access security brokers (CASBs) and
financial and banking applications. Indeed, a number of
commercial CASBs including Skyhigh Networks [60] and Ci-
pherCloud [19] have been using some form of OPE or ORE
schemes in their systems. In addition, financial institutions
may be able to encrypt their data using the aforementioned
schemes in order to provide another layer of security, as-
suming that the performance overhead is acceptable. For
many of these applications the auxiliary information that is



needed for the attacks mentioned above is either unavailable
or difficult to get.

Currently, it is a very challenging task for users to choose
an appropriate data privacy approach for their application,
because the security and performance tradeoff is not well un-
derstood. Both security and performance of every approach
need to be thoroughly evaluated. Characterizing security
benefits of different approaches remains an open problem,
unlikely to be solved in the immediate future. However, it
is possible to evaluate the performance of each approach,
so as to enable better-informed decisions about whether the
improved performance of some schemes is worth the uncer-
tainty about the security they achieve.

We emphasize that it is not trivial to evaluate the perfor-
mance of these schemes. Many of the papers presenting the
above approaches provide only a theoretical treatment and
concentrate more on the security definitions and analysis
and less on the performance. Some of these constructions
have not been even implemented properly. Furthermore,
even though the main target of these schemes and proto-
cols are database applications, most of them have not been
evaluated in database settings.

To address this problem, in this paper we design a new
framework that allows for systematic and extensive com-
parison of OPE and ORE schemes and secure range query
protocols in the context of database applications. We em-
ploy these schemes in database indexing techniques (i.e. B+

trees) and query protocols and we report various costs in-
cluding I/O complexity.

The main contribution of this work is to present an exper-
imental evaluation using both real and synthetic datasets
using our new framework that tracks not only time but
also primitive usage, I/O complexity, and communication
cost. In the process, we present improvements for some
of the schemes that make them more efficient and/or more
secure. To make understanding of these schemes easier for
the reader, we present the main ideas behind these construc-
tions, discuss their security definitions and leakage profiles,
and provide an analysis of implementation challenges for
each one.

1.1 Related work
A number of OPE schemes have been proposed recently

including [1, 55, 8, 9, 62, 40, 66, 35, 39, 36, 68, 67, 47, 23,
48]. Popa, Li, and Zeldovich [56] present a nice analysis
of these schemes and they are the first to show that using a
stateful scheme you can achieve the ideal security guarantees
for OPE. We pick two of these schemes (BCLO [8] and FH-
OPE [39]) that are the most representative and outperform
other schemes.

In addition, there are a number of ORE schemes [10, 18,
46, 16, 15, 11, 28, 24] that have been proposed. We choose
the most practical and most secure of them [18, 46, 16], to
include in the comparison. Also, there are some approaches
that assume an outsourced setting where the client may have
to communicate with the server during query processing [58,
41, 5, 21]. We choose two of these protocols [58, 41] because
they are based on order-preserving approaches and therefore
have similar security models with ORE schemes. We would
like to point out that there are some other methods that
can be used to run range queries on encrypted data that use
different types of schemes and techniques. See [5] and [49]
for an overview of other methods. In this paper we consider

two of the protocols proposed in [21] that use Searchable
Symmetric Encryption (SSE). We stress that the schemes
and protocols discussed here should be used with care, and it
is up to the practitioner how to use them given their security
and performance profiles.

2. SECURITY PERSPECTIVE
Each scheme and protocol we analyze has its own secu-

rity definition, which captures different leakage levels. We
attempt to unify these definitions and analyze them under
a common framework. We also attempt to assess relative
security of these definitions and analyze their leakages.

In this work we mostly consider the snapshot model, where
the attacker can observe all the database contents at one
time instant. Note that this excludes timing attacks such
as measuring encryption time. All security definitions of
the schemes and protocols that we discuss here are based on
this model. Also, the snapshot attacker is the most common
attacker that we face today [5]. The idea is that a hacker
or an insider can steal the entire encrypted database and all
its contents at some point in time.

Beyond the snapshot model, it is also possible to consider
a stronger adversary who can track communication volume
and data access patterns in real time. Approaches that help
protect against such an attacker include ORAM for protec-
tion against access pattern leakage and differential privacy
for protection against communication volume leakage. Al-
though this model is not a primary target of this paper, our
benchmark includes a protocol (Section 4.5.2) that is secure
in this setting to show the cost of adding such protection.

We wanted to specifically comment on a work of Grubbs
et al. [27], which demonstrates a series of attacks against
OPE and ORE schemes. The attacks can be very success-
ful, but they depend on certain prerequisites. First, all
attacks assume the existence of a well-correlated auxiliary
dataset. Second, the binomial attack, which works against
a “perfectly secure frequency-hiding scheme”, reliably re-
covers only high-frequency elements. Finally, the attacks
are specifically devastating against encrypted strings (e.g.
first and last names) as opposed to numerical data, and we
also do not recommend using OPE / ORE for strings (see
Section 2.1). One of the conclusions of our work is that
security is negatively correlated with performance and it is
up to a practitioner to trade off security and performance
constraints.

2.1 A note on variable-length inputs
A generic OPE / ORE scheme accepts bit-strings of any

length as inputs, and treats them as numbers or processes
them bit-by-bit. We warn against supplying raw bytes of
variable length (e.g. encoded strings) to OPE and ORE
schemes, as such an approach will introduce both perfor-
mance and security challenges.

From the performance standpoint, the complexity of OPE
/ ORE schemes usually depends on the input length at least
linearly (see Table 1). 32-bit numbers already introduce a
noticeable overhead for some (usually more secure) schemes,
and supplying arbitrary-length inputs may worsen perfor-
mance by at least an order of magnitude.

Security of such a construction will be minimal as most
schemes leak some information about the magnitude of the
difference, and longer inputs will naturally be treated as
larger numbers. Thus, the difference between long and short



inputs will be apparent. We refer to the work of Grubbs et
al. [27] as they have a practically supported discussion of
security consequences of using OPE / ORE with arbitrary
strings.

On the other hand, other protocols in our benchmark can
usually handle variable-length inputs as long as they fit into
a single block for the underlying block cipher.

3. OPE AND ORE SCHEMES
An Order-Revealing Encryption scheme is a triple of poly-

nomial-time algorithms KGen, Enc and Cmp. KGen gener-
ates a key of parameterized length (the λ parameter). Enc
takes a numerical input (as a bit string) and produces a
ciphertext. Cmp takes two ciphertexts generated by the
scheme and outputs whether the first plaintext was strictly
less than the second. Note that being able to check this
condition is enough to apply all other comparison opera-
tors (<, ≤, =, ≥, >). Also note that an ORE scheme does
not include a decryption algorithm, because one can sim-
ply append a symmetric encryption of the plaintext to the
produced ciphertext and use it for decryption.1 An Order-
Preserving Encryption (OPE) scheme is a particular case of
an ORE scheme where ciphertexts are numerical and thus
Cmp routine is trivial (the numerical order of ciphertexts is
the same as underlying plaintexts). OPE may optionally in-
clude a decryption algorithm, since appending a symmetric
ciphertext is no longer possible.

Both OPE and ORE schemes by definition allow to totally
order the ciphertexts. This is their inherent leakage (by
design) and all the OPE / ORE security definitions account
for this and possibly additional leakage.

We proceed by describing and analyzing the OPE / ORE
schemes we have benchmarked. All plaintexts are assumed
to be 32-bit signed integers, or n-bit inputs in complexity
analysis. OPE ciphertexts are assumed to be 64-bit signed
integers.

From here, we will use the term ORE to refer to both
OPE and ORE, unless explicitly stated otherwise. Each
scheme has its own subsection where the first part is the
construction overview followed by security discussion, and
the second part is our theoretical and experimental analysis.

3.1 BCLO OPE
The OPE scheme by Boldyreva et al. [8] was the first

OPE scheme that provided formal security guarantees and
was used in one of the first database systems that executes
queries over encrypted data (CryptDB [57]). The core prin-
ciple of their construction is the natural connection between
a random order-preserving function and the hypergeometric
probability distribution.

The encryption algorithm works by splitting the domain
into two parts according to a value sampled from the hyper-
geometric distribution (HG) routine, and splitting the range
in half recursively. When the domain size contains a single
element, the corresponding ciphertext is sampled uniformly
from the current range.

1 Given the secret key, it is possible to decrypt a ciphertext
by doing binary search on the plaintext domain: encrypting
known values and comparing them against the target cipher-
text, until the target plaintext is found. However, this would
require O (log |D|) encryption and comparison operations.

All pseudo-random decisions are made by an internal PRG
(TapeGen in [8]). This way not only the algorithm is de-
terministic, but also decryption is possible. The decryption
procedure takes the same “path” of splitting domain and
range, and when the domain size reaches one, the only value
left is the original plaintext.
Security. This scheme is POPF-CCA secure [8], mean-
ing that it is as secure as the underlying ideal object —
randomly sampled order-preserving function from a certain
domain to a certain range. For practical values of the pa-
rameters, Boldyreva, Chenette, and O’Neill [9] showed that
the distance between the plaintexts can be approximated to
an accuracy of about the square root of the domain size. In
other words, approximately, half of the bits (the most signif-
icant) are leaked. Grubbs et al. [27] showed that this leak-
age allows to almost entirely decrypt the ciphertexts (given
auxiliary data with a similar distribution) and encrypting
strings (rather than numbers) with this scheme is especially
dangerous (see Section 2.1).

Analysis and implementation challenges
Efficient sampling from the hypergeometric distribution is
a challenge by itself. Authors suggest using a randomized
yet exact (not approximate) Fortran algorithm by Kachit-
vichyanukul and Schmeiser [34]. It should be noted that the
algorithm relies on infinite precision floating-point numbers,
which most regular frameworks do not have. The security
consequences of finite precision computations is actually an
open question. The complexity of this randomized algorithm
is hard to analyze; however, we empirically verified that its
running time is no worse than linear in the input bit length.
The authors also suggest a different algorithm for smaller
inputs [64].

On average, encryption and decryption algorithms make
n calls to HG, which in turn consumes entropy generated
by the internal PRG. The entropy, and thus the number of
calls to PRG, needed for one HG run is hard to analyze the-
oretically. However, we derived this number experimentally
(see Section 5).

BCLO has been implemented in numerous languages and
has been deployed in a number of secure systems. We add
C# implementation to the list, and recommend using a li-
brary that supports infinite precision floating-point numbers
when building the hypergeometric sampler.

3.2 CLWW ORE
The ORE scheme by Chenette et al. [18], which authors

call “Practical ORE”, is the first efficient ORE implemen-
tation based on PRFs.

On encryption, the plaintext is split into n values in the
following way. For each bit, a value is this bit concatenated
with all more significant bits. This value is given to a keyed
PRF and the result is numerically added to the next less
significant bit. This resulting list of n elements is the ci-
phertext.

The comparison routine traverses two lists in-order look-
ing for the case when one value is greater than the other by
exactly one, revealing location and value of the first differing
bit. If no such index exists, the plaintexts are equal.
Security. A generic ORE security definition was intro-
duced along with the scheme [18]. ORE leakage is more
clearly quantified than in OPE. The definition says that the



Table 1: Primitive usage by OPE / ORE schemes. Ordered by security rank — most secure below. n is the input length in
bits, d is a block size for Lewi-Wu scheme, λ is a PRF output size, N is a total data size, HG is a hyper-geometric

distribution sampler, PPH is a property-preserving hash with h-bit outputs built with bilinear maps and bolded are weak
points of the schemes. See Table 4 for practically derived values.

Scheme
Primitive usage Ciphertext size, Leakage

Encryption Comparison or state size (In addition to inherent total order)

BCLO [8] n HG none 2n ≈ Top half of the bits

CLWW [18] n PRF none 2n Most-significant differing bit

Lewi-Wu [46]

2n/d PRP
n
2d

Hash n
d

(
λ+ n+ 2d+1

)
+ λ Most-significant differing block2n

d

(
2d + 1

)
PRF

n
d

2d Hash

CLOZ [15]
n PRF

n2 PPH n · h Equality pattern of most-significant differing bitn PPH
1 PRP

FH-OPE [39] 1 Traversal 3 Traversals 3 · n ·N Insertion order

scheme is secure with a leakage L(·) if there exists an algo-
rithm (simulator) that has access to the leakage function and
can generate output indistinguishable from the one gener-
ated by the real scheme. This scheme satisfies ORE security
definition with the leakage L(·) of the location and value of
the first differing bit of every pair of plaintexts. Note that
the most significant differing bit also leaks the approximate
distance between two values.

Analysis and implementation challenges
On encryption the algorithm makes n calls to PRF and the
comparison procedure does not use any cryptographic prim-
itives. Ciphertext is a list of length n, where each element
is an output of a PRF modulo 3. The authors claim that
the ciphertext’s size is n log2 3, just 1.6 times larger than the
plaintext’s size. While this may be true for large enough n
if ternary encoding is used, we found that in practice the
ciphertext size is still 2n. 1.6n for 32-bit words is 51.2 bits,
which will have to occupy one 64-bit word, or two 32-bit
words, therefore resulting in 2n anyway.

3.3 Lewi-Wu ORE
Lewi and Wu [46] presented an improved version of the

CLWW scheme [18] which leaks strictly less.
The novel idea was to use the “left / right framework” in

which two ciphertexts get generated — left and right. The
right ciphertexts are semantically secure, so an adversary
will learn nothing from them. Comparison is only defined
between the left ciphertext of one plaintext and the right
ciphertext of another plaintext.

The approach is to split the plaintext into blocks of d bits.
The ciphertext is computed block-wise. For the right side,
the algorithm compares the given block value to all 2d pos-
sible block values; each comparison result is added (modulo
3) to a PRF of the previous blocks. All 2d comparison re-
sults go into the right ciphertext. The left side, which is
shorter, is produced in such a way as to reveal the correct
comparison result. This way the location of the differing
bit inside the block is hidden, but the location of the first
differing block is revealed.
Security. This scheme satisfies the ORE security definition
introduced by Chenette et al. [18] with the leakage L(·) of
the location of the first differing block. This property al-

lows a practitioner to set performance-security tradeoff by
tuning the block size. Left / right framework is particularly
useful in a B+ tree since it is possible to store only one (se-
mantically secure) side of a ciphertext in the structure (see
Section 4.1).

Analysis and implementation challenges
Let n be the size of input in bits (e.g. 32) and d be the
number of bits per block (e.g. 2).

Left encryption loops n
d

times making one PRP call and

two PRF calls each iteration. Right encryption loops n
d

2d

times making one PRP call, one hash call and two PRF calls
each iteration. Comparison makes n

d
calls to hash at worst

and half of that number on average. Please note that the
complexity of right encryption is exponential in the block
size. In the Table 1 the PRP usage is linear due to our
improvement. The ciphertext size is no longer negligible —
n
d

(
λ+ n+ 2d+1

)
+ λ, for λ being PRF output size.

The implementation details of this approach raise an in-
teresting security question. Although the authors suggest
using 3-rounds Feistel networks [59] for PRP and use it in
their implementation, it may not be secure for small input
sizes. Feistel networks security depends on the input size [29]
— exponential in the input size. However, the typical input
for PRP in their scheme is 2–8 bits, thus even exponential
number is small.

We have considered multiple PRP implementations to use
instead of the Feistel networks. Because the domain size is
small (from 22 to 28 elements), we have decided to build a
PRP by simply using the key as an index into the space of all
possible permutations on the domain, where a permutation
is obtained from the key via Knuth shuffle (this approach
was mentioned in [52]). Another important aspect of the
implementation is that for each block we need to compute
the permutation of all the values inside the block. This
operation applied many times can be expensive. To address
this, we propose to generate a PRP table once for the whole
block and then use this table when one needs to compute
the location of an element of permutation. This can reduce
the PRP usage (indeed, we observe a reduction from 80 to
32 calls in our case). We evaluate this improved approach
in our experimental section.



Table 2: Performance of protocols. Ordered by security rank — most secure below. N is a total data size, B is an I/O
page size, L is a POPE tree branching factor, r is the result size in records and bolded are weak points of the protocols. All

values are in O notation. See Table 3 for practically derived values.

Protocol
I/O requests

Leakage
Communication (result excluded)

Construction Query Construction Query

B+ tree with ORE logB
N
B

logB
N
B

+ r
B

Same as ORE 1 1

Kerschbaum [41]
N

B
log2

N
B

+ r
B

Total order log2N log2N

POPE [58] warm
1

logL
N
B

+ r
B

Partial order
1

logLN
POPE [58] cold N/B Fully hiding N

Logarithmic-BRC [20] — r Same as SSE — log2N

ORAM log2 N

B
log2

N

B

(
logB

N

B
+

r

B

)
Fully hiding

log2 N

B
log2 N

B(access pattern)

3.4 CLOZ ORE
Cash et al. [15] introduced a new ORE scheme that prov-

ably leaks less than any previous scheme. The idea is to use
Chenette et al. [18] construction (see Section 3.2), but per-
mute the list of PRF outputs. The original order of those
outputs is not necessary, as one can simply find a pair that
differs by one. This is not enough to reduce leakage, how-
ever, since an adversary can count how many elements two
ciphertexts have in common.

To address this problem, the authors define a new primi-
tive they call a property-preserving hash (PPH). A PPH as
defined and used in [15], allows one to expose a property

(specifically y
?
= x + 1) of two (numerical) elements such

that nothing else is leaked. In particular, the outputs are
randomized, so same element hashed twice will have differ-
ent hashes. Please refer to the original paper [15] for formal
correctness and security definitions.

Equipped with the PPH primitive, the algorithm “hashes”
the elements of the ciphertexts before outputting them. Due
to security of PPH, the adversary would not be able to count
how many elements two ciphertexts have in common, thus,
would not be able to tell the location of differing bit.
Security. The strong side of the scheme is its security. The
scheme leaks L(·) an equality pattern of the most-significant
differing bits (satisfying Chenette et al. [18] definition). As
defined in [15], the intuition behind equality pattern is that
for any triple of plaintexts m1, m2, m3, it leaks whether
m2 differs from m1 before m3 does. We do not know of
any attacks against this construction (partially because no
implementation exists yet, see next subsection), but it is
inherently vulnerable to frequency attacks that apply to all
frequency-revealing ORE schemes (see Section 2).

Analysis and implementation challenges
On encryption, the scheme makes n calls to PRF, n calls
to PPH Hash and one call to PRP. Comparison is more
expensive, as the scheme makes n2 calls to PPH Test.

The scheme has two limitations that make it impractical.
The first one is the square number of calls to PPH, which is
around 1024 for a single comparison.

The second problem is the PPH itself. Authors suggest
a construction based on bilinear maps. The hash of an ar-
gument is an element of a group, and the test algorithm is
computing a pairing. This operation is very expensive — or-

der of magnitude more expensive than any other primitive
we have implemented for other schemes.

We have implemented this scheme in C++ using the PBC
library [50] to empirically assess schemes’s performance, and
on our machine (see Section 5), a single comparison takes
1.9 seconds on average. Although we have produced the first
(correct and secure) real implementation of this scheme in
C++, it is infeasible to use it in the benchmark (it will take
years to complete a single run). Therefore, for the purposes
of our benchmark, we implemented a “fake” version of PPH
— correct, but insecure, which does not use pairings. Con-
sequently, in our analysis we did not benchmark the speed
of the scheme, but measured all other data.

3.5 FH-OPE
Frequency-hiding OPE by Kerschbaum [39] is a stateful

scheme that hides the frequency of the plaintexts, so the
adversary is unable to construct a frequency histogram.

This scheme is stateful, which means that the client needs
to keep a data structure and update it with every encryption
and decryption. The data structure is a binary search tree
where the node’s value is the plaintext and node’s position
in a tree is the ciphertext. For example, consider the range
[1, 128]. Any plaintext that happens to arrive first (for exam-
ple, 6), will be the root, and thus the ciphertext is 64. Then
any plaintext smaller than the root, say 3, will become the
left child of the root, and will produce the ciphertext 32. To
encrypt a value, the algorithm traverses the tree until it finds
a spot for the new plaintext, or finds the same plaintext. If
the same plaintext is found, the traversal pseudo-randomly
passes to the left or right child, up to the leaf. This way,
the invariant of the tree — intervals of the same plaintexts
do not overlap — is maintained. The ciphertext generated
from the new node’s position is returned.

Due to randomized ciphertexts, the comparison algorithm
is more complicated than in the regular deterministic OPE.
To properly compare ciphertexts, the algorithm needs to
know the boundaries — the minimum and maximum cipher-
texts for a particular plaintext. The client is responsible for
traversing the tree to find the plaintext for the ciphertext
and then minimum and maximum ciphertext values. Hav-
ing these values, the comparison is trivial — equality is a
check that the value is within the boundaries, and other
comparison operators are similar.

Authors have designed a number of heuristics to minimize
the state size, however, these are mostly about compacting



the tree and the result depends highly on the tree content. In
our analysis, we consider the worst case performance with-
out the use of heuristics. In our experimental evaluation,
however, we did implement compaction.
Security. The security of the scheme relies on the large
range size to domain size ratio. Authors recommend at
least 6 times longer ciphertexts than the plaintexts in bit-
length, which means ciphertexts should be 192-bit numbers
that are not commonly supported. It is possible to operate
over arbitrary-length numbers, but the performance over-
head would be substantial. We did a quick micro-benchmark
in C# and the overhead of using BigInteger is 15–20 times
for basic arithmetic operations.

This scheme satisfies IND-FAOCPA definition (introduced
along with the scheme [39]), meaning that it does not leak
the equality or relative distance between the plaintexts. This
definition has been criticized in [51], who claim that the defi-
nition is imprecise and propose an enhanced definition along
with a small change to construction to satisfy this new def-
inition. Both schemes leak the insertion order, because it
affects the tree structure. We do not know of any attacks
against this leakage, but it does not mean they cannot exist.
Grubbs et al. [27] describe an attack against this scheme (bi-
nomial attack), but it applies to any perfectly secure (leaking
only total order) frequency-hiding OPE.

Analysis and implementation challenges
If the binary tree grows in only one direction, at some point
it will be impossible to generate another ciphertext. In this
case, the tree has to be rebalanced. This procedure will
invalidate all ciphertexts already generated. This property
makes the scheme difficult to use in some protocols since
they usually rely on the ciphertexts on the server being al-
ways valid. The authors explicitly mention that the scheme
works under the assumption of uniform input. However, the
rebalancing will be caused by insertion of just 65 consecutive
input elements for 64-bit integer range.

The scheme makes one tree traversal on encryption and
decryption. Comparison is trickier as it requires one traver-
sal to get the plaintext, and two traversals for minimum and
maximum ciphertexts. We understand that it is possible to
get these values in fewer than three traversals, but we did
not optimize the scheme for the analysis and evaluation.

For practitioners we note that the stateful nature of the
scheme implies that the client storage is no longer negligible
as the state grows proportionally to the number of encryp-
tions. We also note that implementing compaction exten-
sions will affect code complexity and performance. Finally,
we stress again that some non-uniform inputs can break the
scheme by causing all ciphertexts to be invalid. It is up to
the users of the scheme to ensure uniformity of the input,
which poses serious restrictions on the usage of the scheme.

4. SECURE RANGE QUERY PROTOCOLS
We proceed by describing and analyzing the range query

protocols we have chosen. For the purpose of this paper, a
secure range-query protocol is defined as a client-server com-
munication involving construction and search stages. Com-
munication occurs between a client, who owns some sensi-
tive data, and an honest server, who securely stores it. In
construction stage, a client sends the server the encrypted
datapoints (index-value tuples) and the server stores them
in some internal data structure. In search stage, a client asks

the server for a range (usually specifying it with encrypted
endpoints) and the server returns a set of encrypted records
matching the query. Note that the server may interact with
the client during both stages (e.g. ask the client to sort a
small list of ciphertexts). Also note that we do not allow
batch insertions as it would limit the use cases (e.g. client
may require interactive one-by-one insertions).

The first protocol is a family of constructions where a
data structure (B+ tree in this case) uses ORE schemes in-
ternally. Then, we present alternative solutions with varying
performance and security profiles, not relying on ORE. Fi-
nally, we introduce two baseline solutions we will use in the
benchmark — one that achieves the best performance and
the other that achieves the maximal security.

4.1 Range query protocol from ORE
So far we have analyzed OPE and ORE schemes without

much context. One of the best uses of an ORE is within a
secure protocol. In this section we provide a construction of
a search protocol built with a B+ tree working on top of an
ORE scheme and analyze its security and performance.

The general idea is to consider some data structure that
is optimized for range queries, and to modify it to change all
comparison operators to ORE scheme’s Cmp calls. This way
the data structure can operate only on ciphertexts. Perfor-
mance overhead would be that of using the ORE scheme’s
Cmp routine instead of a plain comparison. Space overhead
would be that of storing ciphertexts instead of plaintexts.

In this paper, we have implemented a typical B+ tree [3]
(with a proper deletion algorithm [33]) as a data structure.

For protocols, we also analyze the I/O performance and
the communication cost. In particular, we are interested in
the expected number of I/O requests the server would have
made to the secondary storage, and the number and size of
messages parties would have exchanged.

The relative performance of the B+ tree depends only on
the page capacity (the longer the ciphertexts, the smaller
the branching factor). Therefore, the query complexity is
O (logB (N/B) + r/B), where B is the number of records (ci-
phertexts) in a block, N is the number of records (cipher-
texts) in the tree and r is the number of records (ciphertexts)
in the result (none for insertions).

Communication amount of the protocol is relatively small
as its insertions and queries require at most one round trip.
Security. The leakage of this protocol consists of leakage
of the underlying ORE scheme plus whatever information
about insertion order is available in the B+ tree. Please
note that Lewi-Wu [46] ORE is particularly well-suited in
this construction with its left / right framework, because
only the semantically secure side of the ciphertext is stored
in the structure. In this case, the ORE leakage becomes only
the total order and the security of the protocol is comparable
with other non-ORE constructions.

4.2 Kerschbaum-Tueno
Kerschbaum and Tueno [41] proposed a new data struc-

ture, which satisfies their own definitions of security (IND-
CPA-DS) and efficiency (search operation has poly-logarith-
mic running time and linear space complexity).

In short, the idea is to maintain a (circular) array of sym-
metrically encrypted ciphertexts in order. On insertion, the
array is rotated around a uniformly sampled offset to hide
the location of the smallest element. Client interactively



performs a binary search requesting an element, decrypting
it and deciding which way to go.
Security. Authors prove that this construction is IND-
CPA-DS secure (defined in the same paper [41]). The defi-
nition assumes an array data structure and therefore serves
specifically this construction (as opposed to being generic).
It provably hides the frequency due to semantic encryption
and hides the location of the first element due to random
rotations. Leakage-wise this construction is strictly bet-
ter than B+ tree with ORE — they both leak total order,
but [41] hides distance information and smallest / largest
elements. Specifically, for all pairs of consecutive elements
ei and ei+1 it is revealed that ei+1 ≥ ei except for one pair
of smallest and largest elements in the set.

4.2.1 Analysis and implementation challenges
Insertions are I/O-heavy because they involve rotation of

the whole data structure. All records will be read and writ-
ten, thus the complexity is O (N/B). Searches are faster
since they involve logarithmic number of blocks. The first
few blocks can be cached and the last substantial number of
requests during the binary search will target a small number
of blocks. The complexity is then O (log2

N/B).
Communication volume is small as well. Insertion requires

log2N messages from each side. Searches require double
that number because separate protocol is run for both end-
points.

The data structure is linear in size, and the client storage
is always small. Sizes of messages are also small as only a
single ciphertext is usually transferred.

For practitioners we have a few points. The construction
in the original paper [41] contains a typo as m and m′ must
be swapped in the insertion algorithm. Also, we have found
some rare edge cases; when duplicate elements span over the
modulo, the algorithm may not return the correct answer.
Both inconsistencies can be fixed however. This protocol
is not optimized for I/O operations for insertions, and thus
would be better suited for batch uploads.

4.3 POPE
Roche et al. [58] presented a protocol, direct improve-

ment over mOPE [56], which is especially suitable for large
number of insertions and small number of queries. The con-
struction is heavily based on buffer trees [2] to support fast
insertion and lazy sorting.

The idea is to maintain a POPE tree on the server and
have the client manipulate that tree. POPE tree is similar
to B-tree, in that the nodes have multiple children and nodes
are sorted on each level. Each node has an ordered list of
labels of size L and an unbounded unsorted set of encrypted
data called buffer. Parameter L controls the list size, the
leaf’s buffer size, and the size of client’s working set. The
insertion procedure simply adds an encrypted piece of data
to the root’s buffer, thus we do not concentrate on insertion
analysis in this section.

The query procedure is more complex. To answer a query,
the server interacts with the client to split the tree according
to the query endpoints. On a high level, for each endpoint
the buffers are cleared (content pushed down to leaves), and
nodes in the paths are split. After that, answering a query
means replying with all ciphertexts in all buffers between
the two endpoint leaves.

The authors provide cost analysis of their construction.
Search operations are expected to require O (logL n) rounds.
It must be noted that the first queries will require many
more rounds, since large buffers must be sorted.
Security. This construction satisfies the security definition
of frequency-hiding partial order-preserving (FH-POP) pro-
tocol (introduced in the paper [58]). According to [58, The-
orem 3], after n insertions and m queries with local storage
of size L, where mL ∈ o(n), the POPE scheme is frequency-

hiding partial order-preserving with Ω
(

n2

mL logL n
− n

)
in-

comparable pairs of elements. Simply put, the construction
leaks pairwise order of a bounded number of elements. Aside
from this, the construction provably hides the frequency (i.e.
equality) of the elements.

4.3.1 Analysis and implementation challenges
In our analysis we count each request-response commu-

nication as a round. This is different from [58] where they
use streaming a number of elements as a single round. The
rationale for our approach is that if we allow persistent chan-
nels additionally to messages, then any protocol can open a
channel for each operation. Thus, we do not allow channels
for all protocols in our analysis.

Also, as noted by the authors, if L = nε for 0 < ε < 1, then
the amortized costs become O (1). While this is true, in our
analysis the choice of L depends on the storage volume block
size for I/O optimizations, instead of the client’s volatile
storage capacity. Thus, the costs remain logarithmic.

Search bandwidth depends heavily on the current state
of the tree. When the tree is completely unsorted (the first
query), all elements of the tree will be transferred to split the
large root, then possibly internal node will have to be split
requiring sending of N

L
elements, and so on, thus O (N + r).

When the tree is completely sorted (after a large number
of uniform queries), the bandwidth will be similar to that
of a standard B+ tree — O (L logLN + r). The average
case is hard to compute; however, authors prove an upper
bound on bandwidth after n insertions and m queries —
O (mL logL n+ n logLm+ n logL(lgn)).

POPE tree is not optimized for I/O the way B-tree is.
Search complexity is hard to analyze as is bandwidth com-
plexity. In the worst-case (first query), all blocks need to be
accessed O

(
N
B

+ r
B

)
. In the best-case all nodes occupy ex-

actly one block and I/O complexity is the same as with B+

tree O
(
logL

N
B

+ r
B

)
. The average case is in between and

matters get worse as the node is not guaranteed to occupy
a single block due to the buffers of arbitrary size.

Client’s persistent storage is negligibly small — it stores
the encryption key. Volatile storage is bounded by L.

For practitioners we present a number of things to con-
sider. Buffer within one node is unsorted, so in the worst-
case, L-sized chunks remain unordered. Due to this prop-
erty, the query result may contain up to 2(L− 1) extra en-
tries, which the client will have to discard from the response.

The first query after a large number of insertions will re-
sult in client sorting the whole N elements, and thus, POPE
has different performance for cold and warm start. Also,
even to navigate an already structured tree, the server has
to send to the client the whole L elements and ask where to
go on all levels.

Furthermore, [58] does not stress the fact that after al-
ternating insertions and queries, it may happen that some
intermediate buffers are not empty, thus returning buffers



Table 3: Simulation results for protocols’ performance values

Protocol
I/O requests (result included)

Communication per operation (result excluded)

Volume (messages) Size (bytes)

Construction Query Construction Query Construction Query

B+ tree w. ORE 3 44 2 2 177 342

Kerschbaum [41] 494 7 40 86 671 1453

POPE [58] warm
1

300
2

914
32

43331
POPE [58] cold 2175 497722 9056644

Logarithmic-BRC [20] — 40 1 2 — 391

ORAM 31 185 143 490 18254 62662

between endpoints must include intermediate buffers as well.
The consequence is that the whole subtree is traversed be-
tween paths to endpoints, unlike the B+ tree case where only
leaves are involved.

Finally, POPE tree is not optimized for I/O operations.
Even if L is chosen so that the node fits in the block, only
leaves and only after some number of searches will optimally
fit in blocks. Arbitrary sized buffers of intermediate nodes
and the lack of underflow requirement do not allow for I/O
optimization.

4.4 Logarithmic-BRC
Demertzis et al. [20] introduced a novel protocol called

“Logarithmic-BRC” whose I/O complexity depends only on
the result size, regardless of the database size. The core
primitive for their construction is a Searchable Symmetric
Encryption (SSE) scheme. An SSE scheme is a server-client
protocol in which the server stores a specially encrypted
keywords-to-documents map, and a client can query doc-
uments with keywords while the server learns neither key-
words nor the documents. Note that the map stores short
document identifiers instead of the actual documents, and
we will use the term “documents” to mean “document iden-
tifiers” or “record IDs” in this section.

The construction treats record values as documents and
index ranges as keywords so that records can be retrieved
by the ranges that include them. Specifically, a client builds
a virtual binary tree over the domain of indices and assigns
each record a set of keywords, which is the path from that
record to the root. This way, the root keyword is associated
with all documents and the leaf keyword is associated with
only one record.

Upon query, a client computes a cover — a set of nodes
whose sub-trees cover the requested range. A client sends
these keywords to the SSE server, which returns encrypted
documents — result values. Of the several covering tech-
niques suggested in the protocol [20] we have chosen the
Best Range Cover (BRC), because it results in fewest nodes
and does not return false-positives. Kiayias et al. [42] have
proven that the worst-case number of nodes for domain of
size N is O (logN) and presented an efficient BRC algo-
rithm.
Security. In a snapshot setting, this construction’s security
is that of the SSE. We have used [14] and [13] SSE schemes;
their leakage in a snapshot setting is the database size and at
most some initialization parameters. Thus, the security of
these schemes is high enough to call them fully hiding in our
setting. Additional access pattern leakage comes up during

queries; exact implications of this leakage remain an open
research problem but it is known that it can be harmful [38].

4.4.1 Analysis and implementation challenges
Communication involves a client sending at worst log2N

keywords and server responding with the exact result.
For each keyword in the query set, server will query the

SSE scheme, which will return r documents. Therefore,
server’s I/O complexity is that of SSE.

Demertzis et al. [20] have used [14] SSE scheme in their im-
plementation, but we have found it slow it terms of I/O. In-
stead, we have implemented an improved scheme [13], which
directly addresses I/O optimization.

Both SSE schemes’ I/O complexity is linear with the re-
sult size r. [13] scheme makes at most one I/O per result
document in the worst-case and there are extensions to sig-
nificantly improve I/O complexity. We have implemented
the pack extension, which packs documents in blocks to fit
the I/O pages. We note that this extension can dramatically
reduce the I/Os (see Section 5.3.3 and Figure 4a).

Logarithmic-BRC is very scalable as its performance does
not depend on total data size and only degrades with the
result size. Storage overhead, however, is significant. Each
record is associated with the whole path in the binary tree —
log2N nodes (keywords). The storage complexity is there-
fore O (N logN), and the overhead is then a factor of logN .

Updates, while addressed in the original protocol, are not
very practical in this construction. Authors suggest using
bulk-loading for updates, maintaining merge trees, and re-
quiring the client to do a merge once in a while. The I/O
complexity of such approach is unclear. In our implementa-
tion we perform the construction stage only in batch mode,
and thus do not include it in the analysis. We also emphasize
that the update routine was not implemented for evaluation
in the original paper.

4.5 The two extremes
To put the aforementioned protocols in a context we intro-

duce the baselines — an efficient and insecure construction
we will refer to as no encryption and maximal security pro-
tocol we refer to as ORAM.

4.5.1 No encryption
This protocol is a regular B+ tree [3] without any ORE

in it. It is the construction one can expect to see in almost
any general-purpose database.

In terms of security it provides no guarantees — all data
is in the clear. In terms of efficiency it is optimal. B+ tree



data structure is optimal in I/O usage, indices inside nodes
are smallest possible (integers) and there is no overhead in
comparing elements inside the nodes as opposed to working
with ORE ciphertexts.

4.5.2 ORAM
Oblivious RAM (ORAM) is a construction that addition-

ally to semantic security of a snapshot setting (see Section 2)
provably hides the access pattern — a sequence of reads
and writes to particular memory locations. With ORAM
an adversary would not be able to recognize a series of ac-
cesses to the same location and will not differentiate reads
versus writes. ORAM was introduced by Goldreich and Os-
trovsky [25] who also proved its lower bound (strengthened
in [45]) — logarithmic overhead per request. A number of
efficient ORAM constructions were designed (see [17] for a
good survey) and we use the state-of-the-art construction,
PathORAM [61].

A generic ORAM server responds to read and write re-
quests for a particular address. In our baseline protocol we
store B+ tree nodes in ORAM. A client works with the tree
as it normally would except each time it needs to access a
node, it communicates with ORAM.

In terms of security this protocol is fully hiding in the
snapshot model and provably hides the access pattern. We
note that one can improve security even further by adding
noise to the result obscuring communication volume. We
also note that a practitioner can use a similar protocol with
ORAM replaced with a trivial data store and have the tree
nodes encrypted. It would be fully hiding in a snapshot
setting, but we prefer the baseline that covers more than
only the snapshot model.

In terms of performance this construction incurs some no-
ticeable overhead. Regardless of specific ORAM being used,
each access incurs at least logarithmic overhead according to
lower bounds [25]. Combined with logarithmic complexity
of the B+ tree itself, the complexity, both I/O and com-
munication, is O

(
log2N

)
. We found that PathORAM has

good I/O performance, as its internal tree structure trans-
lates into good cache affinity. Unlike in other protocols in
our benchmark, ORAM client does most of the computa-
tional work. While the server only makes I/O requests, the
client handles encryption, shuffling, and request logic.

We present this protocol as a baseline solution in terms
of security over efficiency. We have not implemented stand-
alone PathORAM, but rather a simulator which correctly
reports I/O, communication and primitive usage. Surpris-
ingly, we found that ORAM protocol’s overhead, although
higher than in ORE-based protocols, is in-line with the most
secure protocols in our benchmark.

5. EVALUATION
All experiments were conducted on a single machine. We

use macOS 10.14.2 with 8-Core 3.2GHz Intel Xeon W pro-
cessor, 32 GB DDR4 ECC main memory and 1 TB SSD
disk. The main code is written in C# and runs on .NET
Core 2.1.3.

Interactive website
Additionally to making our source code, compiled binaries
and Docker images available, we want to let researchers
interactively run small-sized simulations. We host a web-
site [7] where one can select a protocol (including baselines,

Table 4: Simulation results for ORE primitive usage

Scheme Encryption Comparison Size (bits)

BCLO [8] 41 HG none 64

CLWW [18] 32 PRF none 64

Lewi-Wu [46]
32 PRP

9 Hash 2816160 PRF
64 Hash

CLOZ [15]
32 PRF

1046 PPH 409632 PPH
1 PRP

FH-OPE [39] 1 Traversal 1 Traversal 86842

CLOZ and both SSE schemes), cache size and policy and
I/O page parameter; supply one’s own data and query sets,
and run the simulations. Simulations are run one at a time
and usually complete within seconds. The user is then able
to view the result — tables, plots, values and raw JSON,
which we used to build plots for this paper. Input size on
the website is limited for practical purposes and users are
encouraged to run arbitrary-size simulations using our bina-
ries or Docker images.

5.1 Implementation
We have implemented most of the primitives, data struc-

tures, and constructions ourselves. For some primitives and
all schemes we provided the first open-sourced cross-platform
C# implementation. We note that neither primitives, nor
schemes are production-ready; however, we believe they can
be used in research projects and prototypes. We also em-
phasize that the B+ tree implementation we are using, al-
though our own with instrumentation in it, is not custom
in any way, but rather standard as defined in the original
paper [3] with deletion algorithm by [33].

This software project (22K lines of code, third of which
are tests) is documented and tested (over 97% coverage). All
code including primitives, data structures, schemes, proto-
cols, simulation logic, benchmarks, build scripts and tests is
published on GitHub [6] under CC BY-NC 4.0 license. Ad-
ditionally, we have published parts of the project as stand-
alone .NET Core (nuGet) packages, and we host a web-
server where users can run simulations for small inputs (see
previous subsection).

5.1.1 Primitives
All schemes and protocols use the same primitives, most

of which we implemented ourselves. All primitives rely on
the default .NET Core AES implementation. .NET Core
uses platform-specific implementation of AES, thus lever-
ages AES-NI CPU instruction. In our project all key sizes
are 128 bits, as is AES block size.

We implemented AES-based PRG, which uses AES in
CTR mode and caches unused entropy (as suggested in [30]).
For PRF, since we need only 128-bit inputs and outputs,
we used one application of AES [37, Proposition 3.27]. For
symmetric encryption we use AES with a random initializa-
tion vector in CBC mode [37, Section 3.6.2]. For hash we
use default .NET Core SHA2 implementation. For PRP, we
implemented unbalanced Feistel networks [59] for large in-
puts and Knuth shuffle [43] for small inputs. Please see the
README of project’s repository [6] for low-level details.



5.1.2 Schemes and protocols
We implemented schemes and protocols precisely as in the

original papers. When we found problems or improvements,
we described them in implementation challenges notes, but
did not alter the original designs in our code, unless ex-
plicitly stated. Each ORE scheme implements a C# inter-
face; thus our own implementation of B+ tree operates on
a generic ORE. For the no encryption baseline, we have
a stub implementation of the interface, which has identity
functions for encryption and decryption. It is important to
note that all schemes and protocols use exclusively our im-
plementations of primitives. Thus we rule out the possible
bias of one primitive implementation being faster than the
other.
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Figure 1: Benchmarks of the schemes and primitives

5.1.3 Simulations
We have four types of simulations.
Protocol simulation runs both protocol stages — construc-

tion and search — on supplied data for all protocols includ-
ing all schemes coupled with B+ tree. In this simulation we
measure the primitive usage, number of ORE scheme oper-
ations (when applies), communication volume and size, and
the number of I/O requests. We intentionally do not mea-
sure elapsed time, since it would be extremely inaccurate
in this setting — simulation and measurement routines take
substantial fraction of time.

Scheme simulation runs all five ORE schemes and tracks
only the primitive usage.

The scheme benchmark, however, is designed to track
time. We use Benchmark.NET [54] to ensure that the re-
ported time is accurate. This tool handles issues like cold
/ warm start, elevating process’ priority, and performing
enough runs to draw statistically sound conclusions. This
benchmark reports elapsed time up to nanoseconds for all
four schemes (excluding CLOZ) and their variants.

Finally, primitive benchmark uses the same tool, but com-
pares the primitives. We use it to compare different imple-
mentations of primitives (e.g. Feistel PRP vs pre-generated
permutation) and to approximate time consumption of the
schemes and protocols based on primitive usage.

5.2 Setup
For our simulations, we have used three datasets. Two

synthetic distributions, that are uniform (range is third of
data size) and normal (standard deviation is 0.1 of data
size). The real dataset is California public employees salaries
(“total pay and benefits” column) [63]. Synthetic datasets

and subsets of the real dataset are generated pseudo-ran-
domly. Queries are generated uniformly at random with a
range as a percentage of data size.

5.3 Results

5.3.1 Primitive usage by schemes
In Table 4 we show the simulation-derived values of each

OPE and ORE scheme’s primitive usage. Each scheme is
given 1000 data points of each dataset. First, the scheme
encrypts each data point, then decrypts each ciphertext and
then performs five comparisons (all possible types) pairwise.
This micro-simulation is repeated 100 times. Resulting val-
ues for primitive usage are averaged for each scheme. State
and ciphertext sizes are calculated after each operation and
the values are averaged. Please note that the simulated val-
ues are consistent with the theoretical calculations.

5.3.2 Benchmarks of schemes and primitives
Using the Benchmark.NET tool [54], we have accurately

tracked the performance of the schemes and primitives run-
ning of different parameters (see Figure 1). ORE schemes
benchmark setup is the same as in primitive usage simula-
tion 5.3.1. Primitives were given randomly generated byte
inputs and keys of different sizes (e.g. PRP of 2 to 32 bits).
Benchmark.NET decides how many times to run the routine
to get statistically sound results. For example, large vari-
ance results in more runs. To improve the accuracy, each
run is compiled in release mode as a separate project and
runs in a separate process with the highest priority.

Please note the logarithmic scale of the schemes’ perfor-
mances. FH-OPE is fast since it does not perform CPU-
heavy operations and works in main memory. Lewi-Wu per-
formance degrades exponentially with the increase of block
size mainly due to exponential number of PRF executions
and the performance of PRP degrading exponentially. Note
also that Lewi-Wu comparison takes noticeable time due to
Hash primitive usage.

In the primitives benchmark, it is clear that most prim-
itives use AES under the hood. PRG and PRF take less
than AES because they do not include the initialization
vector generation needed for symmetric encryption. PRP
is implemented as a Knuth shuffle [43] and its complexity
is exponential in the input bit length. Input size of 2 bits
is shown on Figure 1. PRG does not discard the entropy
generated by AES cycle, so one AES cycle can supply four
32-bit integers. PRP generates the permutation table once
and does not regenerate it if the same key and number of
bits are supplied.

5.3.3 Protocols
In this experiment we have run each protocol with each

of the three datasets. Dataset sizes are 247000 (bounded
by California Employees dataset size) and the number of
queries is 1000. Queries are generated uniformly at random
with a fixed range — 0.5% of data size. The cache size is
fixed to 128 blocks, and the B+ tree branching factor as well
as block sizes for other protocols are set such that the page
size is 4 kilobytes. The values we are measuring are the
number of I/O operations, communication volume, and size
for both construction and query stages.

See Table 3 for the snapshot for particular distribution
(CA employees). Figure 2 shows all values we tracked for
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Figure 2: Performance values for different data distributions

all protocols and distributions. Values for ORE based pro-
tocols are averaged. Being “cold” in our simulations means
executing the first query and being “warm” means the first
query has been previously executed. This difference makes
sense only for POPE as its first query incurs disproportion-
ately large overhead by design.

Note that all ORE based protocols behave the same except
when ciphertext size matters. Thus, since BCLO, CLWW
and FH-OPE have the same ciphertext size, they create B+

trees with the same page capacity and have the same num-
ber of I/Os for different operations. Lewi-Wu and CLOZ
schemes have relatively large ciphertexts and thus induce
larger traffic (see Subfigure 2c) and smaller B+ tree branch-
ing factor resulting in greater number of I/O requests (see
Subfigure 2d). Kerschbaum protocol requires high number
of I/O requests during construction since it needs to insert
an element into the arbitrary place in an array and rotate
the data structure on a disk.

POPE suffers huge penalty on the first query (see Sub-
figures 2d, 2e and 2f) since it reads and sends all blocks to
the client for sorting. POPE performance improves as more
queries are executed.

Logarithmic-BRC does not support interactive insertions
and thus its construction stage is not benchmarked. Oth-
erwise it is the most performant of all non-ORE protocols.
Note, however, that its performance depends on the result
size, not data size.

As expected, ORAM performs worse than the ORE-based
protocols, but its performance is in-line with the non-ORE
protocols. It may seem that ORAM does especially bad
in construction communication (Subfigures 2e, 2f), but it is

only because POPE has a shortcut in construction. This
“debt” is being payed off during queries (Subfigure 2f).

Note that the values do not vary a lot among different
data distributions except for I/O requests. I/O performance
depends on the result size for queries, and is therefore more
sensitive to data distribution.

Also note that using an ORE scheme with relatively small
ciphertext in B+ tree does not add any substantial I/O over-
head (see “No encryption”).

On Figure 4a it is clear that query performance does not
depend substantially on the query size, except for Loga-
rithmic-BRC, for which the relation is linear. Note that
Logarithmic-BRC with optimally configured pack extension
shows almost no growth. This is because for large ranges
BRC will return the higher nodes (keywords matching many
documents), which are optimally packed in I/O pages. As
query range doubles, higher nodes are involved increasing
the chance that requested keywords have their documents
packed.

Figure 3 shows Table 2 asymptotic values. The simulation
was run for uniform dataset of 247000 records (hundred per-
cent), 1000 queries, 0.5% query range and 128 blocks cache
size. Kerschbaum construction I/Os and cold POPE query
values grow linearly with inputs, while the other protocols
grow logarithmically, square-logarithmically, or do not grow.

Figure 4b shows how the performance of protocols fluctu-
ates as queries are processed. Note that POPE and Loga-
rithmic-BRC fluctuate the most (which is, in general, unde-
sirable), and POPE is the only protocol where cold versus
warm makes a difference.
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6. REMARKS AND CONCLUSION
Having done theoretical and practical evaluations of the

protocols, we have found that primitive usage is a much bet-
ter performance measure than the plain time measurements.
When it comes to practical use, the observed time of a query
execution is a mix of a number of factors and I/O requests
can slow the system down dramatically.

ORE-based B+ tree protocol is provably I/O optimal and
can potentially be extended by using another data structure
with ORE. Its security/performance trade off is tunable by
choosing and parametrizing the underlying ORE scheme.
Each scheme we considered has its own unique advantages
and drawbacks. BCLO [8] is the least secure scheme in the
benchmark, but is stateless and produces numerical cipher-
texts, so it may be used in the databases without any modi-
fications. Frequency-hiding OPE [39] also has this property,
hides the frequency of the ciphertexts, but is stateful and re-
quires uniform input. Lewi-Wu [46] is easily customizable in
terms of tuning performance to security ratio, and it offers
the security benefits of left / right framework — particuarly
useful for B+ tree. CLWW [18] provides weaker security
guarantees but is the fastest scheme in the benchmark.

Kerschbaum protocol [41] offers semantically secure ci-
phertexts, hiding the location of the smallest and largest of
them, and has a simple implementation. The protocol is
well-suited for bulk insertions and scales well.

POPE [58] offers a “deferred” B+ tree implementation.
By deferring the sorting of its ciphertexts, POPE remains
more secure for the small number of queries. POPE has
the fastest insertion routine and does not reveal the order of
most of its ciphertexts. It will be more performant for the
systems where there are a lot more insertions than queries.

We would also recommend to “warm up” the structure to
avoid a substantial delay upon the first query.

Logarithmic-BRC is a perfect choice for huge datasets
where query result size is limited. It is the only protocol with
substantial space overhead, but it offers scalability and per-
fect (in a snapshot setting) security, and a carefully chosen
and configured SSE scheme ensures that I/O grows slowly
as a function of result size.

ORAM has shown the most interesting result. Its perfor-
mance is not only adequate, but also in-line with the other
even less secure protocols. With this empirical result, we
expect more interest in ORAM research, possibly discover-
ing tighter bounds, faster constructions and efficient ways to
use the schemes. The performance of ORAM gives an upper
bound on the acceptable performance level of less secure (ac-
cess pattern revealing) protocols, as practitioners will choose
ORAM over both less secure and less performant solutions.

We found our framework to be a powerful tool for analyz-
ing the protocols, and we hope developers of new protocols
will contribute implementations and evaluate them.

An important future work is to understand better the
meaning of the different leakage profiles and their implica-
tions. Furthermore, another direction is to try to improve
the performance of the most secure schemes (e.g. [15]).

7. ACKNOWLEDGMENTS
We thank Adam O’Neill, George Kellaris, Lorenzo Orec-

chia, Ioannis Demertzis, Oleksandr Narykov and Daria Boga-
tova for helpful discussions. We also thank the anonymous
reviewers for useful suggestions. George Kollios and Dmytro
Bogatov were supported by an NSF SaTC Frontier Award
CNS-1414119. Leonid Reyzin was supported in part by NSF
grant 1422965.



8. REFERENCES

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order
preserving encryption for numeric data. In Proceedings
of the 2004 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’04, pages 563–574.
ACM, 2004.

[2] L. Arge. The buffer tree: a technique for designing
batched external data structures. Algorithmica, 37(1):1–
24, Sept. 2003.

[3] R. Bayer and E. McCreight. Organization and main-
tenance of large ordered indices. In Proceedings of the
1970 ACM SIGFIDET (Now SIGMOD) Workshop on
Data Description, Access and Control, SIGFIDET ’70,
pages 107–141. ACM, 1970.

[4] V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart,
and V. Shmatikov. The tao of inference in privacy-
protected databases. PVLDB, 11(11):1715–1728, 2018.

[5] T. Boelter, R. Poddar, and R. A. Popa. A secure one-
roundtrip index for range queries. IACR Cryptology
ePrint Archive, 2016.

[6] D. Bogatov. ORE Benchmark. https://github.com/
dbogatov/ore-benchmark, 2018.

[7] D. Bogatov. Interactive secure range queries simula-
tions, 2019. https://ore.dbogatov.org/.

[8] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill.
Order-preserving symmetric encryption. In Advances
in Cryptology - EUROCRYPT 2009, pages 224–241.
Springer Berlin Heidelberg, 2009.

[9] A. Boldyreva, N. Chenette, and A. O’Neill. Order-
preserving encryption revisited: improved security anal-
ysis and alternative solutions. In Advances in Cryptol-
ogy – CRYPTO 2011, pages 578–595. Springer Berlin
Heidelberg, 2011.

[10] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry,
and J. Zimmerman. Semantically secure order-revealing
encryption: multi-input functional encryption without
obfuscation. In Advances in Cryptology - EUROCRYPT
2015, pages 563–594. Springer Berlin Heidelberg, 2015.

[11] M. Bun and M. Zhandry. Order-revealing encryption
and the hardness of private learning. In Theory of
Cryptography, pages 176–206. Springer Berlin Heidel-
berg, 2016.

[12] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-
abuse attacks against searchable encryption. In Pro-
ceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, pages 668–
679. ACM, 2015.

[13] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk,
and M. Steiner. Dynamic searchable encryption in very-
large databases: data structures and implementation.
In In Network and Distributed System Security Sym-
posium (NDSS ’14, 2014.

[14] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C.
Rosu, and M. Steiner. Highly-scalable searchable sym-
metric encryption with support for boolean queries. In
pages 353–373. Springer Berlin Heidelberg, 2013.

[15] D. Cash, F.-H. Liu, A. O’Neill, M. Zhandry, and C.
Zhang. Parameter-hiding order revealing encryption.
In Advances in Cryptology – ASIACRYPT 2018, 2018.
Forthcoming.

[16] D. Cash, F.-H. Liu, A. O’Neill, and C. Zhang. Reduc-
ing the leakage in practical order-revealing encryption.
Cryptology ePrint Archive, Report 2016/661, 2016.

[17] Z. Chang, D. Xie, and F. Li. Oblivious RAM: a dissec-
tion and experimental evaluation. PVLDB, 9(12):1113–
1124, 2016.

[18] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu. Prac-
tical order-revealing encryption with limited leakage.
In Fast Software Encryption, pages 474–493. Springer
Berlin Heidelberg, 2016.

[19] Ciphercloud. https://www.ciphercloud.com/.

[20] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deli-
giannakis, and M. Garofalakis. Practical private range
search revisited. In pages 185–198. ACM, 2016.

[21] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deli-
giannakis, and M. N. Garofalakis. Practical private
range search revisited. In Proceedings of the 2016 In-
ternational Conference on Management of Data, pages 185–
198, 2016.

[22] F. B. Durak, T. M. DuBuisson, and D. Cash. What
else is revealed by order-revealing encryption? In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1155–1166.
ACM, 2016.

[23] Y. Elovici, R. Waisenberg, E. Shmueli, and E. Gudes.
A structure preserving database encryption scheme.
In Secure Data Management, pages 28–40. Springer
Berlin Heidelberg, 2004.

[24] J. Eom, D. H. Lee, and K. Lee. Multi-client order-
revealing encryption. IEEE Access:45458–45472, 2018.

[25] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious RAMs. J. ACM, 43(3):431–
473, May 1996.

[26] P. Grubbs, T. Ristenpart, and V. Shmatikov. Why
your encrypted database is not secure. In Proceedings
of the 16th Workshop on Hot Topics in Operating Sys-
tems, pages 162–168. ACM, 2017.

[27] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed,
and T. Ristenpart. Leakage-abuse attacks against order-
revealing encryption. 2017 IEEE Symposium on Secu-
rity and Privacy (SP):655–672, 2016.

[28] H. Haagh, Y. Ji, C. Li, C. Orlandi, and Y. Song. Re-
vealing encryption for partial ordering. In Cryptogra-
phy and Coding, pages 3–22. Springer International
Publishing, 2017.

[29] V. T. Hoang and P. Rogaway. On generalized Feistel
networks. In Proceedings of the 30th Annual Confer-
ence on Advances in Cryptology, pages 613–630. Springer-
Verlag, 2010.

[30] R. Housley. Using Advanced Encryption Standard (AES)
Counter Mode With IPsec Encapsulating Security Pay-
load (ESP). RFC 3686, Jan. 2004. url: https : / /

tools.ietf.org/html/rfc3686.

https://github.com/dbogatov/ore-benchmark
https://github.com/dbogatov/ore-benchmark
https://ore.dbogatov.org/
https://www.ciphercloud.com/
https://tools.ietf.org/html/rfc3686
https://tools.ietf.org/html/rfc3686


[31] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access
pattern disclosure on searchable encryption: ramifica-
tion, attack and mitigation. In 19th Annual Network
and Distributed System Security Symposium, NDSS
2012, San Diego, California, USA, February 5-8, 2012,
2012.

[32] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Inference
attack against encrypted range queries on outsourced
databases. In Fourth ACM Conference on Data and
Application Security and Privacy, CODASPY’14, San
Antonio, TX, USA - March 03 - 05, 2014, pages 235–
246, 2014.

[33] J. Jannink. Implementing deletion in B+-trees. SIG-
MOD Rec., 24(1):33–38, Mar. 1995.

[34] V. Kachitvichyanukul and B. Schmeiser. ALGORITHM
668: H2PEC: sampling from the hypergeometric dis-
tribution. 14:397–398, Dec. 1988.

[35] H. Kadhem, T. Amagasa, and H. Kitagawa. MV-OPES:
multivalued-order preserving encryption scheme: a novel
scheme for encrypting integer value to many different
values:2520–2533, 2010.

[36] H. Kadhem, T. Amagasa, and H. Kitagawa. Optimiza-
tion techniques for range queries in the multivalued-
partial order preserving encryption scheme. In Knowl-
edge Discovery, Knowledge Engineering and Knowl-
edge Management, pages 338–353. Springer Berlin Hei-
delberg, 2013.

[37] J. Katz and Y. Lindell. Introduction to Modern Cryp-
tography. Chapman & Hall/CRC, second edition, 2014.
isbn: 9781466570269.

[38] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill.
Generic attacks on secure outsourced databases. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1329–
1340. ACM, 2016.

[39] F. Kerschbaum. Frequency-hiding order-preserving en-
cryption. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 656–667. ACM, 2015.

[40] F. Kerschbaum and A. Schroepfer. Optimal average-
complexity ideal-security order-preserving encryption.
In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 275–
286. ACM, 2014.

[41] F. Kerschbaum and A. Tueno. An efficiently search-
able encrypted data structure for range queries. arXiv
preprint arXiv:1709.09314, 2017.

[42] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and
T. Zacharias. Delegatable pseudorandom functions and
applications. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer &#38; Communications Se-
curity, pages 669–684. ACM, 2013.

[43] D. E. Knuth. Seminumerical algorithms, volume 2.
Addison-Wesley, 3rd edition, 2016, pages 145–146.

[44] M. Lacharite, B. Minaud, and K. G. Paterson. Im-
proved reconstruction attacks on encrypted data us-
ing range query leakage. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 297–314, 2018.

[45] K. G. Larsen and J. B. Nielsen. Yes, there is an obliv-
ious RAM lower bound! In Advances in Cryptology -
CRYPTO 2018, pages 523–542, 2018.

[46] K. Lewi and D. J. Wu. Order-revealing encryption:
new constructions, applications, and lower bounds. In
pages 1167–1178. ACM, 2016.

[47] D. Liu and S. Wang. Programmable order-preserving
secure index for encrypted database query. In Pro-
ceedings - 2012 IEEE 5th International Conference on
Cloud Computing, CLOUD 2012, pages 502–509, 2012.

[48] D. Liu and S. Wang. Nonlinear order preserving index
for encrypted database query in service cloud environ-
ments. Concurrency and Computation: Practice and
Experience:1967–1984.

[49] Z. Liu, K.-K. R. Choo, and M. Zhao. Practical-oriented
protocols for privacy-preserving outsourced big data
analysis: challenges and future research directions. Com-
puters & Security, 69:97–113, 2017.

[50] B. Lynn. Pairings-based crypto (PBC). 2018. url: https:
//crypto.stanford.edu/pbc/ (visited on 08/15/2018).

[51] M. Maffei, M. Reinert, and D. Schröder. On the secu-
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