
A Comparative Evaluation of Order-Revealing Encryption Schemes and Secure Range-Query Protocols
Dmytro Bogatov George Kollios Leonid Reyzin

Computer Science, Boston University {dmytro,gkollios,reyzin}@bu.edu

Abstract

Database query evaluation over encrypted data has received a lot of attention
recently. Order Preserving Encryption (OPE) and Order Revealing Encryp-
tion (ORE) are two important encryption schemes that have been proposed in
this area. These schemes can provide very efficient query execution, but at the
same time may leak some information to adversaries. More protocols have been
introduced that are based on Searchable Symmetric Encryption (SSE), Oblivi-
ous RAM (ORAM) or custom encrypted data structures. We present the first
comprehensive comparison among a number of important secure range query
protocols using a framework that we developed. We evaluate five ORE-based
and five generic range query protocols. We analyze and compare them both
theoretically and experimentally and measure their performance over database
indexing and query evaluation. We report not only execution time but also
I/O performance, communication amount, and usage of cryptographic primi-
tive operations. Our comparison reveals some interesting insights concerning
the relative security and performance of these approaches in database settings.

Order-Preserving Encryption

An Order-Preserving Encryption (OPE) scheme is a tuple of polynomial-time
algorithms Setup, Encrypt, Decrypt defined over a well-ordered domain
D with the following properties:
• Setup(1λ) → sk. On input a security parameter λ (formally, in unary, to
ensure polynomial running time), the randomized setup algorithm Setup
outputs a secret key sk.
•Encrypt(sk,m)→ ct. On input the secret key sk and a messagem ∈ D,
the possibly randomized encryption algorithm Encrypt outputs a numer-
ical ciphertext ct.
•Decrypt(sk,ct) → m. On input the secret key sk and a numerical
ciphertext ct, the deterministic decryption algorithm Decrypt outputs the
original message m.

OPE scheme is correct when Decrypt is correct
Pr[Decrypt(sk,Encrypt(sk,m)) = m] = 1− negl(λ)

and when the order of ciphertexts is preserved
Pr[P (m1,m2) = P (ct1,ct2)] = 1− negl(λ)

for P being a comparison operator (<, ≤, =, ≥, >).

Order-Revealing Encryption

An Order-Revealing Encryption (ORE) scheme is different from OPE in the
format of ciphertexts and public keyless Compare routine
•Encrypt(sk,m) → ct. On input the secret key sk and a message m ∈
D, the possibly randomized encryption algorithm Encrypt outputs a non-
numeric ciphertext ct.
•Compare(ct1,ct2)→ b. On input two ciphertexts ct1, ct2, the compar-
ison algorithm Compare outputs a bit b ∈ {0, 1}.

ORE is correct when Compare is correct
Pr[Compare(ct1,ct2) = 1(m1 < m2)] = 1− negl(λ)

for 1(·) being 1 when the condition is true.
To decrypt, having a secret key one can either do a binary search over domain,
or attach a symmetric encryption to the ciphertext and use it for decryption.

ORE-based Secure Range Query protocol

For an ORE scheme ORE = (Setup,Encrypt,Compare), symmetric
encryption scheme S = (Setup,Encrypt,Decrypt) and data structure
DS = (Insert,Search), the protocol Π is defined as follows.
•Π.Setup:
–Generate K = ORE.Setup(·) and k = S.Setup(·)
– Initialize DS
•Π.Insert(i, v):
–Client encrypts a data point index i = ORE.Encrypt(K, i)
–Client encrypts a data point value v = S.Encrypt(k, v)
–Client sends {i,v} to the server
– Server stores the encrypted data point DS.Insert({i,v})
•Π.Search(l, r):
–Client encrypts the endpoints {l, r} = ORE.Encrypt(K, {l, r})
–Client sends {l, r} to the server
– Server answers the query r = DS.Search({l, r})
– Server sends the result r back to the client
–Client decrypts all elements r = S.Decrypt(k, r)

ORE schemes primitive usage

Scheme
Primitive usage Greater of cipher Security

Encryption Comparison or state size Definition Leakage

BCLO [1] n HG none 2n POPF-CCA Half of the bits

CLWW [2] n PRF none 2n ORE with leakage Most significant differing bit

Lewi-Wu [3]

2n/d PRP
n
2d Hash n

d

λ + n + 2d+1 + λ ORE with leakage Most significant differing block2nd
2d + 1

 PRF
n
d2
d Hash

FH-OPE [4] 1 Traversal 3 Traversals 3 · n · N IND-FAOCPA Insertion order

CLOZ [5]
n PRF

n2 PPH n · h ORE with leakage Most significant differing bit equality patternn PPH
1 PRP

n is the input length in bits, d is a block size for Lewi-Wu scheme, λ is a PRF output size, N is a total data size, HG is hyper-geometric distribution
sampler, PPH is property-preserving hash with h-bit outputs built with bilinear maps and bolded are weak points of the schemes

Protocols performance values

Protocol
I/O requests

Security
Communication (result excluded)

Construction Query Construction Query volume Query size

B+ tree with ORE logB N
B logB N

B + r
B Same as ORE 1 1

Kerschbaum-Tueno [6] N
B

log2
N
B + r

B IND-CPA-DS log2N log2N

POPE [7] cold
1

N/B FH-OP
1

N

POPE [7] warm logL N
B + r

B FH-OP Pratial logLN L logLN

Logarithmic-BRC [8] — r Same as SSE — 1

ORAM with B+ tree log2 N logB N log2 N
logB N + r

B

 Fully hiding log2
N
B log2

N
B

N is a total data size, B is an I/O page size, L is a POPE tree branching factor, r is the result size in records and bolded are weak points of the
protocols. All values are in O notation.

Protocols descriptions

ORE with B+ tree. In essence, this construction is a regular B+ tree with
ORE ciphertexts as indices and Compare routine built in. This construc-
tion’s strength is its I/O optimization — O (logB (N/B) + r/B).

13

9 11 16

1 4 9 10 11 12 13 15 16 20 25

Kerschbaum-Tueno [6]. This construction maintains an array of symmetri-
cally encrypted indices on the server, in-order, but with applied modular
rotation. When inserting or searching, server interactively traverses the struc-
ture like a binary tree asking client for a direction to go. Each time a new
element is inserted, a structure is rotated incurring massive I/O overhead.

6 7 8 9 10 11 13 2 3 4 512 14 1

POPE [7]. This construction is based on buffer trees to support fast insertion
and lazy sorting. All indices are symmetrically encrypted and server asks the
client to sort a list of ciphertexts thus structuring the tree. New elements
are always inserted in the root’s buffer, and during queries are pushed down
to the leaves. This construction incurs massive I/O overhead on first query
(cold start) and its nodes are not optimized for I/O page size.

5 3 40

2 10 17

-3 1 2 3 4 8 11 13 15 20 30 35

Logarithmic BRC usnig SSE [8]. This construction builds a virtual binary
tree over the input domain and assigns each input element keywords from
the path from this element to the root. This keyword-index mapping is en-
crypted with SSE. On query, a client finds the minimal number of nodes
that cover the range and queries the SSE server for these keywords. This
construction’s I/O performance is that of SSE — linear in result size.

0 1

00 01 10 11

000 001 010 011 100 101 110 111
0 1 2 3 4 5 6 7

001

01

[1-3] 001

2,3

1

01

B+ tree in ORAM. A client operates on a regular B+ tree, but each time a
node is accessed it is read or written to the ORAM server. This effectively
squares the I/O usage since for each node in the logarithmic path, there is
a logarithmic overhead in ORAM. This construction, however, is the most
secure — additionally to data it hides the access pattern.

2 10 17

2 10 17

-5 -2 1 3 5 7 11 15 16

Our results

Performance values for different data distributions

482
484
486
488
490
492
494 Uniform distribution

Normal distribution
CA public employees dataset

No e
ncr

yp
tio

n

BCLO
, C

LW
W,

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm ORAM
0
4
8

12
16
20
24
28
32

Construction stage number of I/O requests

45
60
75
90

105
120
135
150 Uniform distribution

Normal distribution
CA public employees dataset

No e
ncr

yp
tio

n

BCLO
, C

LW
W,

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm ORAM
0
5

10
15
20
25
30
35
40
45

Construction stage communication volume (number of
messages)

320
360
400
440
480
520
560
600
640
680 ORAM avg: 17482Uniform distribution

Normal distribution
CA public employees dataset

No e
ncr

yp
tio

n

BCLO
, C

LW
W,

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm ORAM
0
4
8

12
16
20
24
28
32

Construction stage communication size (bytes transferred)

250
500
750

1,000
1,250
1,500
1,750
2,000
2,250
2,500

Uniform distribution
Normal distribution
CA public employees dataset

No e
ncr

yp
tio

n

BCLO
, C

LW
W,

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm
CJJJK

RS
ORAM

0
20
40
60
80

100
120
140
160
180
200

Query stage number of I/O requests

490,500
492,000
493,500
495,000
496,500
498,000
499,500
501,000
502,500
504,000 Uniform distribution

Normal distribution
CA public employees dataset

No e
nc

ryp
tio

n

BCLO
, C

LW
W,

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm
CJJJK

RS
ORAM

0
150
300
450
600
750
900

Query stage communication volume (number of messages)

No e
ncr

yp
tio

n

BCLO
, C

LW
W,

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm
CJJJK

RS
ORAM

101

102

103

104

105

106

107 Uniform distribution
Normal distribution
CA public employees dataset

Query stage communication size (bytes transferred,
logarithmic scale)

Schemes and primitives

Schemes and primitives benchmarks

BCLO
CLW

W

Lew
i-W

u-1
6

Lew
i-W

u-8

Lew
i-W

u-4

FH
-OPE

101

102

103

104

105

Encryption
Comparion

Schemes benchmark (time in
microseconds, log scale). Lewi-Wu
parameter is the number of blocks.

AES PR
G PR

F
Hash PR

P

HG Sa
mple

r
0

3

6

9

12

15

18

21

24

27

Primitives benchmark (time in
microseconds)

Benchmark methodology

•We have implemented almost all primitives, schemes, data structures and
protocols ourselves. The code is written in C# and runs on .NET Core
2.2. The code is tested with over a thousand unit tests and the coverage
is above 97%.
•Almost all primitives are based on AES.
• Faithful modeling of I/O using different caching policies — LRU, LFU
and FIFO.
•Time for primitive and schemes benchmark is measured with Bench-
mark.NET. I/O requests, primitive usage and communication are mea-
sured by firing events from within execution and carefully catching them.
• Synthetic data sets are generated pseudo-randomly and real one is Cali-
fornia public employees salaries.
•All computations except rare symmetric encryptions are deterministic
given global seed. All experiments can be reproduced exactly.
•Our tool is capable of generating massive detailed fine-grained reports for
protocol executions. We present only the most interesting tiny fraction
of the experimental results.

Conclusions

We have found that primitive usage is a much better performance measure
than the plain time measurements. We have also found that I/O optimiza-
tions is a vital characteristic of a protocol and cannot be neglected.
ORE with B+ tree is tuneable in security / performance tradeoff. Index
data structure and underlying ORE scheme can be replaced independently.
Kerschbaum protocol [6] offers semantically secure ciphertexts, hides the
location of the smallest and largest of them, has a simple implementation,
but requires batch insertions.
POPE [7] offers a “deferred” B+ tree implementation and remains more
secure for the small number of queries. Incurs massive I/O hit on first
queries and is not optimized for I/O like B+ tree.
Logarithmic BRC usnig SSE [8] relies on underlying SSE scheme’s security
and offers a different tradeoff — performance as a function of the result
size. It is also not optimized for non-batch insertions.
ORAM offers the strongest security. Performance hit, although heavy, is
comparable with other protocols. ORAM server acts as a generic secure
key-value store.

Acknowledgements
We would like to thank Adam O’Neill, George Kellaris and Ioannis Demertzis for helpful
discussions and Daria Bogatova for help with protocol diagrams. We also thank ESSA2
workshop organizers and attendees for in-depth discussions of their constructions. George
Kollios and Dmytro Bogatov were supported by an NSF SaTC Frontier Award CNS-
1414119. Leonid Reyzin was supported in part by NSF grant 1422965.

References

[1] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam
O’Neill.
Order-preserving symmetric encryption.
In Advances in Cryptology - EUROCRYPT 2009, pages 224–241.
Springer Berlin Heidelberg, 2009.

[2] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu.
Practical order-revealing encryption with limited leakage.
In Fast Software Encryption, pages 474–493. Springer Berlin
Heidelberg, 2016.

[3] Kevin Lewi and David J. Wu.
Order-revealing encryption: New constructions, applications, and
lower bounds.
pages 1167–1178. ACM, 2016.

[4] Florian Kerschbaum.
Frequency-hiding order-preserving encryption.
In Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, pages 656–667. ACM, 2015.

[5] David Cash, Feng-Hao Liu, Adam O’Neill, Mark Zhandry, and
Cong Zhang.
Parameter-hiding order revealing encryption.
In Advances in Cryptology – ASIACRYPT 2018, 2018.

[6] Florian Kerschbaum and Anselme Tueno.
An efficiently searchable encrypted data structure for range queries.

arXiv preprint arXiv:1709.09314, 2017.

[7] Daniel S. Roche, Daniel Apon, Seung Geol Choi, and Arkady
Yerukhimovich.
Pope: Partial order preserving encoding.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1131–1142. ACM, 2016.

[8] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou,
Antonios Deligiannakis, and Minos Garofalakis.
Practical private range search revisited.
pages 185–198. ACM, 2016.

Built on August 23, 2021 from 033c727c

Published at PVLDB, 12(8), 2019
dbogatov.org/assets/docs/ore-benchmark.pdf

https://git.dbogatov.org/bu/ore-benchmark/mit-poster/commit/033c727c
https://dbogatov.org/assets/docs/ore-benchmark.pdf

	Acknowledgments

