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Motivation and overview

• With vast amounts of data, organizations choose to use cloud
• Challenge: solutions must be both secure and efficient
• Query types: SELECT * FROM t1
• Point queries: WHERE zip = '02215'
• Range queries: WHERE age BETWEEN 18 AND 65
• kNN queries: ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5
• JOIN / GROUP BY queries: INNER JOIN t2 ON (t1.k = t2.k) GROUP BY zip

• Security models for an outsourced database system
• Snapshot adversary: steal the hard drive and RAM snapshot
• Persistent adversary: continuously monitor the entire server

1
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My work

Proposed thesis structure
Dmytro Bogatov, George Kollios, and Leonid Reyzin. A comparative evaluation of order-
revealing encryption schemes and secure range-query protocols.
Proceedings of the VLDB Endowment, 12(8):933–947, 2019
Model: snapshot, query type: range

Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim, and AdamO’Neill. Epsolute:
Efficiently querying databases while providing differential privacy.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Se-
curity (CCS ’2021), 2021
Model: persistent, query type: point and range

In-progress: Private kNN queries
Model: snapshot, query type: kNN

In-progress: Oblivious JOIN queries
Model: persistent, query type: JOIN

Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoui,
and Björn Tackmann. Anonymous transactions with
revocation and auditing in hyperledger fabric.
In International Conference on Cryptology and
Network Security. Springer, 2021
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A COMPARATIVE EVALUATION OF
ORDER-REVEALING ENCRYPTION
SCHEMES AND SECURE RANGE-QUERY
PROTOCOLS [19]
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Survey of OPE/ORE schemes [19]

The problem
• Model: snapshot, query type: range
• Performance / security tradeoff
• Heterogeneous security definitions and leak-
age profiles

• Performance not well-understood
• Some schemes are not even implemented
• Prototype implementation at best
• Not benchmarked against one another
• Use different primitive implementations
• Each claims to be practical and secure

Our solution
• Analyzed security and leakages of the con-
structions under a common framework

• Analyzed theoretically performance of the
constructions

• Implemented and ran experiments
• Implemented 5 OPE / ORE schemes and 5
range query protocols

• Used same language, framework and prim-
itive implementations

• Benchmarked primitives execution times
• Counted invocations of primitives and I/O
requests

ORE table Protocols table Plot
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EPSOLUTE: EFFICIENTLY QUERYING
DATABASES WHILE PROVIDING
DIFFERENTIAL PRIVACY [21]
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Motivation

The problem
• Previous solutions work in the snapshot model (adversary steals the hard drive)
• What about persistent adversary (malicious script with root permissions)?
Model: persistent, query type: point and range

• Need to protect access pattern and communication volume
• Using ORAM to hide the access pattern
Expensive, each request costs O(log n) ORAM definition

• Adding fake records (noise) to the answer to hide the result size
How much noise to add to have a guarantee and the least overhead?
Adding a constant or a uniformly sampled noise is not an option
Differential Privacy!

4
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Differential Privacy, LPA and Sanitization

Definition (Differential Privacy, adapted from [5, 6])
A randomized algorithm A is (ϵ, δ)-differentially private if for all D1 ∼ D2 ∈ X n, and for all
subsets O of the output space of A,

Pr [A (D1) ∈ O] ≤ exp(ϵ) · Pr [A (D2) ∈ O] + δ .

How to make sense of it?
• Differential Privacy is a property of an algorithm
What about ϵ and δ?

• How to construct such an algorithm?
Laplace Perturbation Method!

• What if negative value is sampled?
Cannot truncate one side, must shift entire distribution

5
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Differentially Private Outsourced Database System

Definition (Computationally Differentially Private Outsourced Database System (CDP-ODB))
We say that an outsourced database system Π is (ϵ, δ)-computationally differentially private
(a.k.a. CDP-ODB) if for every polynomial time distinguishing adversary A, for every neighboring
databases D ∼ D′, and for every query sequence q1, . . . ,qm ∈ Qm where m = poly(λ),

Pr [A (1λ, VIEWΠ,S (D,q1, . . . ,qm)
)
= 1] ≤
exp ϵ · Pr

[
A
(
1λ, VIEWΠ,S (D′,q1, . . . ,qm)

)
= 1

]
+ δ + negl(λ) ,

the probability is over the randomness of the distinguishing adversary A and the protocol Π.
Note:
• Entire view of the adversary is DP-protected
• Implies protection against communication volume and access pattern leakages
• Query sequence q1, . . . ,qm ∈ Qm is fixed (more on that next)
• negl(λ) needed for the computational (as opposed to information-theoretical) DP definition

6
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On impossibility of adaptive queries

Why is the query sequence q1, . . . ,qm ∈ Qm fixed?
• Suppose neighboring medical databases differ in one record with a rare diagnosis
“Alzheimer’s disease”

• A medical professional, who is a user, not an adversary queries the database
• for that diagnosis first
SELECT name FROM patients WHERE condition = 'ALZ'

• if there is a record, she queries the senior patients next
SELECT name FROM patients WHERE age >= 65

• otherwise she queries the general population, resulting in many more records
SELECT name FROM patients

• Adversary can know the answer to the first query by observing result size of the second
• Efficient system cannot return nearly the same number of records in both cases, thus, the
adversary can distinguish

7
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Single-Threaded Epsolute

Single-Threaded Epsolute protocol

Server User

User
ORAM

ServerStorage

Searchkey RecordID
Salary$40K IDs 56,46,89
Salary$50K IDs 85,38,63

... ...
Recordindex

Query:
“Salaries $40K–$50K"

ORAM read requests

ClientDPhisotgram
(point queries)

DPtree(rangequeries)

noise

noise

8



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

Parallel Epsolute

• Single-threaded version is prohibitively slow, must parallelize
Assume single-threaded solution generates r = 1 500 real and f = 500 noisy records

• Split U and S state into m ORAMs, run as separate machines (assume m = 4)
• Partition records randomly (by ID) into m partitions, generate m inverted indexes
• What to do about DS?

No-γ method: DS per ORAM
• Composition of disjoint datasets: take max ϵ
• Each ORAM incurs noise comparable to f
• Win by splitting ORAMwork r intom partitions
and lose by multiplying noise f times m

• That is, each ORAM is processing r
m + f = 875

records in parallel

γ-method: shared DS
• Same number of total records per ORAM
• Generated noise is larger than f (say, 2f)
• But it is split among m ORAMs
• That is, each ORAM is processing r+2f

m = 625
records in parallel

9
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Parallel Epsolute diagram (with improvements)

1Query:
ages18to 21

UntrustedserverpartySTrusteduserpartyU

User

4 ORAM requests:
ORAM IDs
Block IDs

2 True indices

LightweightORAM
machine

LightweightORAM
machine

KVS Store

KVS Store

KVS Store

KVS Store

3 Computing the amount of noise

5 ORAM GET requests

5 ORAM GET requests

5 ORAM GET requests

5 ORAM GET requests

DPhistogram

B+ tree

Application

DPtree

Client

6 prunning 
fake records
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Experiments: against other mechanisms

Different range-query mechanisms (log scale). Default setting: 106 4 KiB uniformly-sampled records with the
range 104.
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Experiments: scalability

Scalability measurements for Πγ (shared DS) and Πno−γ (DS per ORAM)

12
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WORK-IN-PROGRESS:
PRIVATE kNN QUERIES
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General idea

• Model: snapshot, query type: kNN in arbitrary dimensions
• Input: vector of real numbers, query: return k “closest” inputs to given vector
Distance can be Lp (usually, Euclidean, p = 2) or inner (dot) product

• Applications range from similarity search to geographical search
Document is a vector of words/features/topics, query is to find k most similar documents
Object on a map is a 2D vector, query is to find k nearest locations

• Approximate distance-comparison preserving encryption (DCPE) scheme on input and queries

∀x, y, z ∈ X : DIST (x, y) < DIST (x, z)− β =⇒ DIST (f(x), f(y)) < DIST (f(x), f(z))

• Prove theoretically and observe empirically how accuracy of search and efficiency of attacks
drop with higher security

DCPE TREC and FAISS Intermediate results plot

13
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General idea

• Model: persistent, query type: inner equi-JOIN
• Input: two tables T1 and T2, query: return a cross-product of T1 and T2 where T1.k = T2.k
We may also consider SELECT JOIN: WHERE T1.k = T2.k AND T1.a = 10

• Challenge: produce JOIN result hiding both access pattern and result size
• Proposed solution:
• use enclave (SGX) and oblivious primitives (sort, compaction)
• construct index over join keys, add DP noise to it
• partition the data by keys to fit a partition in the enclave
• consolidate sparse keys as an optimization
• do inner join within partition

Detailed Algorithm

14



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

General idea

• Model: persistent, query type: inner equi-JOIN
• Input: two tables T1 and T2, query: return a cross-product of T1 and T2 where T1.k = T2.k
We may also consider SELECT JOIN: WHERE T1.k = T2.k AND T1.a = 10

• Challenge: produce JOIN result hiding both access pattern and result size
• Proposed solution:
• use enclave (SGX) and oblivious primitives (sort, compaction)
• construct index over join keys, add DP noise to it
• partition the data by keys to fit a partition in the enclave
• consolidate sparse keys as an optimization
• do inner join within partition

Detailed Algorithm

14



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

General idea

• Model: persistent, query type: inner equi-JOIN
• Input: two tables T1 and T2, query: return a cross-product of T1 and T2 where T1.k = T2.k
We may also consider SELECT JOIN: WHERE T1.k = T2.k AND T1.a = 10

• Challenge: produce JOIN result hiding both access pattern and result size
• Proposed solution:
• use enclave (SGX) and oblivious primitives (sort, compaction)
• construct index over join keys, add DP noise to it
• partition the data by keys to fit a partition in the enclave
• consolidate sparse keys as an optimization
• do inner join within partition

Detailed Algorithm

14



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

General idea

• Model: persistent, query type: inner equi-JOIN
• Input: two tables T1 and T2, query: return a cross-product of T1 and T2 where T1.k = T2.k
We may also consider SELECT JOIN: WHERE T1.k = T2.k AND T1.a = 10

• Challenge: produce JOIN result hiding both access pattern and result size
• Proposed solution:
• use enclave (SGX) and oblivious primitives (sort, compaction)
• construct index over join keys, add DP noise to it
• partition the data by keys to fit a partition in the enclave
• consolidate sparse keys as an optimization
• do inner join within partition

Detailed Algorithm

14



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

Dissertation Prospectus
Secure and Efficient Query Processing in Outsourced Databases
Range Queries [19, 21], Point Queries [21], kNN Queries, JOIN Queries

Dmytro Bogatov
dmytro@bu.edu
Built from 034dbe1e on January 4, 2022
Boston University
Graduate School of Arts and Sciences
Department of Computer Science

mailto:dmytro@bu.edu
https://git.dbogatov.org/bu/proposal/presentation/commit/034dbe1e


Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

References i

REFERENCES

[1] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-preserving
symmetric encryption. In Advances in Cryptology - EUROCRYPT 2009, pages 224–241. Springer
Berlin Heidelberg, 2009.

[2] David Cash, Feng-Hao Liu, Adam O’Neill, Mark Zhandry, and Cong Zhang. Parameter-hiding
order revealing encryption. In Advances in Cryptology – ASIACRYPT 2018, pages 181–210.
Springer International Publishing, 2018.

[3] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. Practical order-revealing
encryption with limited leakage. In Fast Software Encryption, pages 474–493. Springer Berlin
Heidelberg, 2016.

15



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

References ii

[4] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deligiannakis,
and Minos Garofalakis. Practical private range search revisited. In Proceedings of the 2016
International Conference on Management of Data, pages 185–198, 2016.

[5] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
data, ourselves: Privacy via distributed noise generation. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 486–503. Springer,
2006.

[6] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sen-
sitivity in private data analysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006.

[7] Georg Fuchsbauer, Riddhi Ghosal, Nathan Hauke, and Adam O’Neill. Approximate distance-
comparison-preserving symmetric encryption. Cryptology ePrint Archive, Report 2021/1666,
2021. https://ia.cr/2021/1666.

16

https://ia.cr/2021/1666


Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

References iii

[8] Oded Goldreich. Towards a theory of software protection and simulation by oblivious rams.
In Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages
182–194, 1987.

[9] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
rams. Journal of the ACM (JACM), 43(3):431–473, 1996.

[10] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus.
arXiv preprint arXiv:1702.08734, 2017.

[11] Florian Kerschbaum. Frequency-hiding order-preserving encryption. In Proceedings of the
22Nd ACM SIGSAC Conference on Computer and Communications Security, pages 656–667.
ACM, 2015.

[12] Florian Kerschbaum and Anselme Tueno. An efficiently searchable encrypted data structure
for range queries. In Computer Security – ESORICS 2019, pages 344–364. Springer Interna-
tional Publishing, 2019.

17



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

References iv

[13] Kevin Lewi and David J. Wu. Order-revealing encryption: New constructions, applications,
and lower bounds. pages 1167–1178. ACM, 2016.

[14] Daniel S. Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhimovich. POPE: Partial
order preserving encoding. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1131–1142. ACM, 2016.

[15] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro. Taostore: Over-
coming asynchronicity in oblivious data storage. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 198–217. IEEE, 2016.

[16] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious ram with o(log3 n)
worst-case cost. In International Conference on The Theory and Application of Cryptology
and Information Security, pages 197–214. Springer, 2011.

[17] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. Towards practical oblivious RAM. In
Network and Distributed System Security Symposium (NDSS), 2012.

18



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

References v

[18] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu, and
Srinivas Devadas. Path oram: An extremely simple oblivious ram protocol. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer Communications Security, pages 299–310.
ACM, 2013.

[19] Dmytro Bogatov, George Kollios, and Leonid Reyzin. A comparative evaluation of order-
revealing encryption schemes and secure range-query protocols. Proceedings of the VLDB
Endowment, 12(8):933–947, 2019.

[20] Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoui, and Björn Tackmann. Anonymous
transactions with revocation and auditing in hyperledger fabric. In International Conference
on Cryptology and Network Security. Springer, 2021.

[21] Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill.
Epsolute: Efficiently querying databases while providing differential privacy. In Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer and Communications Security (CCS
’2021), 2021.

19



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

References vi

[22] Dong Xie, Guanru Li, Bin Yao, Xuan Wei, Xiaokui Xiao, Yunjun Gao, and Minyi Guo. Practical
private shortest path computation based on oblivious storage. In 2016 IEEE 32nd Interna-
tional Conference on Data Engineering (ICDE), pages 361–372. IEEE, 2016.

20



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University
APPENDIX



Dmytro Bogatov
Boston University
Dmytro Bogatov
Boston University

OPE / ORE schemes

Scheme Primitive usage Ciphertext size, Leakage
Encryption Comparison or state size (in addition to inherent total order)

BCLO [1] n HG none 2n ≈ Top half of the bits
CLWW [3] n PRF none 2n Most-significant differing bit

Lewi-Wu [13]
2n/d PRP

n
2d Hash n

d
(
λ+ n+ 2d+1)+ λ Most-significant differing block2nd

(2d + 1) PRF
n
d2d Hash

CLOZ [2]
n PRF

n2 PPH n · h Equality pattern of most-significant differing bitn PPH
1 PRP

FH-OPE [11] 1 Traversal 3 Traversals 3 · n · N Insertion order
Back to ORE
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Range query protocols

Protocol I/O requests Leakage Communication (result excluded)
Construction Query Construction Query

B+ tree with ORE logB
N
B logB

N
B + r

B Same as ORE 1 1
Kerschbaum [12] N

B log2
N
B + r

B Total order log2N log2N

POPE [14] warm 1 logL
N
B + r

B Partial order 1 logLN
POPE [14] cold N/B Fully hiding N

Logarithmic-BRC [4] — r Same as SSE — log2N

ORAM log2 NB log2
N
B
(
logB

N
B + r

B
) Fully hiding

log2 NB log2 NB(access pattern)
Back to ORE
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One of the experimental results
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Access pattern and ORAM

Access pattern is a sequence of memory accesses y, where each access consists of the memory
location o, read r or write w operation and the data d to be written.
Oblivious RAM (ORAM) is a mechanism that hides the accesses pattern. More formally, ORAM is
a protocol between the client C (who accesses) and the server S (who stores), with a guarantee
that the view of the server is indistinguishable for any two sequences of the same lengths.

|y1| = |y2|
VIEWS(y1) c≈ VIEWS(y2)

ORAM protocol
1 : Client C Server S
2 : y = (r, i,⊥)|5i=1

3 : (client state) ORAM (y) (server state)

4 : {d1,d2,d3,d4,d5}

For example: Square Root ORAM [8], Hierarchical ORAM [9], Binary-Tree ORAM [16], Interleave
Buffer Shuffle Square Root ORAM [22], TP-ORAM [17], Path-ORAM [18] and TaORAM [15]. ORAM
incurs at least logarithmic communication overhead in the number of stored records. [9]

Back to Epsolute
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Component: DCPE

∀x, y, x ∈ X : DIST (x, y) < DIST (x, z)− β =⇒ DIST (f(x), f(y)) < DIST (f(x), f(z))
• The scheme is by Riddhi Ghosal and Adam O’Neil [7]
• Key generation: sample at random length multiplier s and seeds for samplers
• Encrypt: take input vector x ∈ Rd

• Sample nonce n
• Using nonce and seeds, sample a point a on a β-radius d-dimensional ball
• New vector is extended times s and points to a

• Decrypt: take encrypted vector c ∈ Rd and nonce n
• Do same steps except shrink times s and remove ball component

Back to kNN
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Component: TREC dataset and FAISS [10]

• Dataset is 8.8M documents represented as vectors of 768 dimensions
Thanks Hamed Zamani for the dataset

• Query is a 768-dimensional vector asking for k = 1 000 closest (inner product) documents
• Original document set is a Text REtrieval Conference (TREC) test collection
set of documents, set of topics (questions), and corresponding set of relevance judgments (right answers)

• FAISS [10]: GPU-enabled library for efficient similarity search and clustering of dense vectors
Developed and maintained by Facebook AI

• General algorithm: for different β
• Encrypt dataset with β

• Encrypt queryset with β

• Run queries with FAISS
• Generate TREC metrics (using relevance judgments)

Back to kNN
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Intermediate results

TREC metrics, result set distance and difference, for running kNN search for β ∈ {0, 1, . . . , 50}
Back to kNN
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Oblivious JOINs detailed algorithm

• Construct list L of the form (k,n1, n̂1,n2, n̂2), with an element per distinct key plus noise
k is a join key, n and n̂ are real and n̂oisy numbers of records with that key in corresponding input table
Noise sampled to a hierarchical sanitizer from a Laplacian distribution

• Client U sends sorted L and hierarchical sanitizer over noise counts to the server S
Similar to Epsolute, adversary does not learn much from noisy counts

• Server S partitions L by k, so that partition size (n̂1 + n̂2) is bounded and uniform
Resulting mapping from keys to partitionsM(k) = i can be proven DP

• Consolidate sparse keys: ensure that each bin corresponds to at least U real keys
Bin is collection of tuples for which we will do cross-product join

• Obliviously move and pad each bin/partition with dummy records
Within each bin the data is sorted by input tables

• For each bin, do cartesian product
Back to Oblivious Joins
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