Dissertation Prospectus

Secure and Efficient Query Processing in Outsourced Databases

Range Queries $[19, 21]$, Point Queries $[21]$, kNN Queries, JOIN Queries

Dmytro Bogatov
dmytro@bu.edu

Built from c87e98cc on December 24, 2021

Boston University
Graduate School of Arts and Sciences
Department of Computer Science
INTRODUCTION AND BACKGROUND
Motivation and overview

- With vast amounts of data, organizations choose to use cloud
- **Challenge**: solutions must be both **secure** and **efficient**
- Query types: SELECT * FROM t1
 - Point queries: WHERE zip = '02215'
 - Range queries: WHERE age BETWEEN 18 AND 65
 - kNN queries: ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5
 - JOIN / GROUP BY queries: INNER JOIN t2 ON (t1.k = t2.k) GROUP BY zip
- Security models for an outsourced database system
 - **Snapshot** adversary: steal the hard drive and RAM snapshot
 - **Persistent** adversary: continuously monitor the entire server
Motivation and overview

- With vast amounts of data, organizations choose to use cloud
- **Challenge**: solutions must be both **secure** and **efficient**
- Query types: `SELECT * FROM t1`
 - Point queries: `WHERE zip = '02215'`
 - Range queries: `WHERE age BETWEEN 18 AND 65`
 - kNN queries: `ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5`
 - JOIN / GROUP BY queries: `INNER JOIN t2 ON (t1.k = t2.k) GROUP BY zip`
- Security models for an outsourced database system
 - **Snapshot** adversary: steal the hard drive and RAM snapshot
 - **Persistent** adversary: continuously monitor the entire server
Motivation and overview

• With vast amounts of data, organizations choose to use cloud
• **Challenge:** solutions must be both **secure** and **efficient**
• Query types: `SELECT * FROM t1`
 • Point queries: `WHERE zip = '02215'`
 • Range queries: `WHERE age BETWEEN 18 AND 65`
 • kNN queries: `ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5`
 • JOIN / GROUP BY queries: `INNER JOIN t2 ON (t1.k = t2.k) GROUP BY zip`
• Security models for an outsourced database system
 • **Snapshot** adversary: steal the hard drive and RAM snapshot
 • **Persistent** adversary: continuously monitor the entire server
Motivation and overview

• With vast amounts of data, organizations choose to use cloud
• **Challenge:** solutions must be both **secure** and **efficient**
• Query types: `SELECT * FROM t1`
 • Point queries: `WHERE zip = '02215'`
 • Range queries: `WHERE age BETWEEN 18 AND 65`
• kNN queries: `ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5`
• JOIN / GROUP BY queries: `INNER JOIN t2 ON (t1.k = t2.k) GROUP BY zip`
• Security models for an outsourced database system
 • **Snapshot** adversary: steal the hard drive and RAM snapshot
 • **Persistent** adversary: continuously monitor the entire server
Motivation and overview

• With vast amounts of data, organizations choose to use cloud

• Challenge: solutions must be both secure and efficient

• Query types: SELECT * FROM t1
 • Point queries: WHERE zip = '02215'
 • Range queries: WHERE age BETWEEN 18 AND 65
 • kNN queries: ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5
 • JOIN / GROUP BY queries: INNER JOIN t2 ON (t1.k = t2.k) GROUP BY zip

• Security models for an outsourced database system
 • Snapshot adversary: steal the hard drive and RAM snapshot
 • Persistent adversary: continuously monitor the entire server
Motivation and overview

- With vast amounts of data, organizations choose to use cloud
- **Challenge**: solutions must be both **secure** and **efficient**
- Query types: `SELECT * FROM t1`
 - Point queries: `WHERE zip = '02215'`
 - Range queries: `WHERE age BETWEEN 18 AND 65`
 - kNN queries: `ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5`
 - JOIN / GROUP BY queries: `INNER JOIN t2 ON (t1.k = t2.k) GROUP BY zip`
- Security models for an outsourced database system
 - **Snapshot** adversary: steal the hard drive and RAM snapshot
 - **Persistent** adversary: continuously monitor the entire server
• With vast amounts of data, organizations choose to use cloud

• **Challenge:** solutions must be both **secure** and **efficient**

• Query types: `SELECT * FROM t1`
 • Point queries: `WHERE zip = '02215'`
 • Range queries: `WHERE age BETWEEN 18 AND 65`
 • kNN queries: `ORDER BY location <-> '(29.9691,-95.6972)' LIMIT 5`
 • `JOIN / GROUP BY` queries: `INNER JOIN t2 ON (t1.k = t2.k) GROUP BY zip`

• Security models for an outsourced database system
 • **Snapshot** adversary: steal the hard drive and RAM snapshot
 • **Persistent** adversary: continuously monitor the entire server
Proposed thesis structure

Model: snapshot, query type: range

Model: persistent, query type: point and range

In-progress: Private kNN queries

Model: snapshot, query type: kNN

In-progress: Oblivious JOIN queries

Model: persistent, query type: JOIN
My work

Proposed thesis structure

Model: snapshot, query type: range

Model: persistent, query type: point and range

In-progress: Private kNN queries

Model: snapshot, query type: kNN

In-progress: Oblivious JOIN queries

Model: persistent, query type: JOIN
Proposed thesis structure

Model: snapshot, query type: range

Model: persistent, query type: point and range

In-progress: Private kNN queries

Model: snapshot, query type: kNN

In-progress: Oblivious JOIN queries

Model: persistent, query type: JOIN
My work

Proposed thesis structure

Model: snapshot, query type: range

Model: persistent, query type: point and range

In-progress: Private *k*NN queries

Model: snapshot, query type: *k*NN

In-progress: Oblivious JOIN queries

Model: persistent, query type: JOIN
My work

Proposed thesis structure

Model: snapshot, query type: range

Model: persistent, query type: point and range

In-progress: Private kNN queries

Model: snapshot, query type: kNN

In-progress: Oblivious JOIN queries

Model: persistent, query type: JOIN

A COMPARATIVE EVALUATION OF ORDER-REVEALING ENCRYPTION SCHEMES AND SECURE RANGE-QUERY PROTOCOLS [19]
The problem

- Model: snapshot, query type: range
- Performance / security tradeoff
- Heterogeneous security definitions and leakage profiles
- Performance not well-understood
 - Some schemes are not even implemented
 - Prototype implementation at best
 - Not benchmarked against one another
 - Use different primitive implementations
 - Each claims to be practical and secure

Our solution

- Analyzed security and leakages of the constructions under a common framework
- Analyzed theoretically performance of the constructions
- Implemented and ran experiments
 - Implemented 5 OPE / ORE schemes and 5 range query protocols
 - Used same language, framework and primitive implementations
 - Benchmarked primitives execution times
 - Counted invocations of primitives and I/O requests
The problem

- Model: snapshot, query type: range
- Performance / security tradeoff
- Heterogeneous security definitions and leakage profiles
- Performance not well-understood
 - Some schemes are not even implemented
 - Prototype implementation at best
 - Not benchmarked against one another
 - Use different primitive implementations
 - Each claims to be practical and secure

Our solution

- Analyzed security and leakages of the constructions under a common framework
- Analyzed theoretically performance of the constructions
- Implemented and ran experiments
 - Implemented 5 OPE / ORE schemes and 5 range query protocols
 - Used same language, framework and primitive implementations
 - Benchmarked primitives execution times
 - Counted invocations of primitives and I/O requests
Epsolute: Efficiently Querying Databases While Providing Differential Privacy [21]
Motivation

The problem

- Previous solutions work in the snapshot model (adversary steals the hard drive)
- What about persistent adversary (malicious script with root permissions)?
 Model: persistent, query type: point and range
- Need to protect access pattern and communication volume
 - Using ORAM to hide the access pattern
 Expensive, each request costs $O(\log n)$
 - Adding fake records (noise) to the answer to hide the result size
 How much noise to add to have a guarantee and the least overhead?
 Adding a constant or a uniformly sampled noise is not an option
 Differential Privacy!
The problem

- Previous solutions work in the snapshot model (adversary steals the hard drive)
- What about **persistent** adversary (malicious script with **root** permissions)?

 Model: **persistent**, query type: **point** and **range**

- Need to protect access pattern and communication volume

- Using ORAM to hide the access pattern

 Expensive, each request costs $O(\log n)$

- Adding fake records (noise) to the answer to hide the result size

How much noise to add to have a guarantee and the least overhead? Adding a constant or a uniformly sampled noise is not an option

Differential Privacy!
Motivation

The problem

• Previous solutions work in the snapshot model (adversary steals the hard drive)
• What about persistent adversary (malicious script with root permissions)?
 Model: persistent, query type: point and range
• Need to protect access pattern and communication volume
• Using ORAM to hide the access pattern
 Expensive, each request costs $\mathcal{O}(\log n)$
• Adding fake records (noise) to the answer to hide the result size
 How much noise to add to have a guarantee and the least overhead?
 Adding a constant or a uniformly sampled noise is not an option
 Differential Privacy!
Definition (Differential Privacy, adapted from [5, 6])

A randomized algorithm A is (ϵ, δ)-differentially private if for all $D_1 \sim D_2 \in X^n$, and for all subsets O of the output space of A,

$$\Pr [A(D_1) \in O] \leq \exp(\epsilon) \cdot \Pr [A(D_2) \in O] + \delta.$$

How to make sense of it?

- Differential Privacy is a property of an algorithm.
 - What about ϵ and δ?

- How to construct such an algorithm?
 - Laplace Perturbation Method!

- What if negative value is sampled?
 - Cannot truncate one side, must shift entire distribution.
Definition (**Differential Privacy**, adapted from [5, 6])

A randomized algorithm A is (ϵ, δ)-differentially private if for all $D_1 \sim D_2 \in \mathcal{X}^n$, and for all subsets O of the output space of A,

$$\Pr[A(D_1) \in O] \leq \exp(\epsilon) \cdot \Pr[A(D_2) \in O] + \delta.$$

How to make sense of it?

- Differential Privacy is a property of an algorithm

 What about ϵ and δ?

- How to construct such an algorithm?

 Laplace Perturbation Method!

- What if negative value is sampled?

 Cannot truncate one side, must shift entire distribution
Definition (Differential Privacy, adapted from [5, 6])

A randomized algorithm A is (ϵ, δ)-differentially private if for all $D_1 \sim D_2 \in X^n$, and for all subsets O of the output space of A,

$$\Pr[A(D_1) \in O] \leq \exp(\epsilon) \cdot \Pr[A(D_2) \in O] + \delta.$$

How to make sense of it?

- Differential Privacy is a property of an algorithm
 What about ϵ and δ?

- How to construct such an algorithm?
 Laplace Perturbation Method!

- What if negative value is sampled?
 Cannot truncate one side, must shift entire distribution
Definition (Differential Privacy, adapted from [5, 6])

A randomized algorithm A is (ϵ, δ)-differentially private if for all $D_1 \sim D_2 \in \mathcal{X}^n$, and for all subsets \mathcal{O} of the output space of A,

$$\Pr[A(D_1) \in \mathcal{O}] \leq \exp(\epsilon) \cdot \Pr[A(D_2) \in \mathcal{O}] + \delta.$$

How to make sense of it?

- Differential Privacy is a property of an algorithm
- What about ϵ and δ?
- How to construct such an algorithm?
 - Laplace Perturbation Method!
- What if negative value is sampled?
 - Cannot truncate one side, must shift entire distribution
Differential Privacy, LPA and Sanitization

Definition (Differential Privacy, adapted from [5, 6])

A randomized algorithm A is (ϵ, δ)-differentially private if for all $D_1 \sim D_2 \in \mathcal{X}^n$, and for all subsets O of the output space of A,

$$\Pr[A(D_1) \in O] \leq \exp(\epsilon) \cdot \Pr[A(D_2) \in O] + \delta.$$

How to make sense of it?

- Differential Privacy is a property of an algorithm
 - What about ϵ and δ?
- How to construct such an algorithm?
 - Laplace Perturbation Method!
- What if negative value is sampled?
 - Cannot truncate one side, must shift entire distribution
Definition (Computationally Differentially Private Outsourced Database System (CDP-ODB))

We say that an outsourced database system Π is (ϵ, δ)-computationally differentially private (a.k.a. CDP-ODB) if for every polynomial time distinguishing adversary A, for every neighboring databases $D \sim D'$, and for every query sequence $q_1, \ldots, q_m \in Q^m$ where $m = \text{poly}(\lambda)$,

$$\Pr[A(1^\lambda, \text{VIEW}_{\Pi,S}(D, q_1, \ldots, q_m)) = 1] \leq \exp \epsilon \cdot \Pr[A(1^\lambda, \text{VIEW}_{\Pi,S}(D', q_1, \ldots, q_m)) = 1] + \delta + \text{negl}(\lambda),$$

the probability is over the randomness of the distinguishing adversary A and the protocol Π.

Note:

- Entire view of the adversary is DP-protected
- Implies protection against communication volume and access pattern leakages
- Query sequence $q_1, \ldots, q_m \in Q^m$ is fixed (more on that next)
- $\text{negl}(\lambda)$ needed for the computational (as opposed to information-theoretical) DP definition
Definition (Computationally Differentially Private Outsourced Database System (CDP-ODB))

We say that an outsourced database system Π is (ϵ, δ)-computationally differentially private (a.k.a. CDP-ODB) if for every polynomial time distinguishing adversary A, for every neighboring databases $D \sim D'$, and for every query sequence $q_1, \ldots, q_m \in Q^m$ where $m = \text{poly}(\lambda)$,

$$
\Pr \left[A \left(1^\lambda, \text{VIEW}_{\Pi,S} \left(D, q_1, \ldots, q_m \right) \right) = 1 \right] \leq \exp \epsilon \cdot \Pr \left[A \left(1^\lambda, \text{VIEW}_{\Pi,S} \left(D', q_1, \ldots, q_m \right) \right) = 1 \right] + \delta + \text{negl}(\lambda),
$$

the probability is over the randomness of the distinguishing adversary A and the protocol Π.

Note:

- Entire view of the adversary is DP-protected
- Implies protection against communication volume and access pattern leakages
- Query sequence $q_1, \ldots, q_m \in Q^m$ is fixed (more on that next)
- $\text{negl}(\lambda)$ needed for the computational (as opposed to information-theoretical) DP definition
On impossibility of adaptive queries

Why is the query sequence $q_1, \ldots, q_m \in Q^m$ fixed?

- Suppose neighboring medical databases differ in one record with a rare diagnosis “Alzheimer’s disease”
- A medical professional, who is a user, not an adversary queries the database
 - for that diagnosis first

    ```sql
    SELECT name FROM patients WHERE condition = 'ALZ'
    ```
 - if there is a record, she queries the senior patients next

    ```sql
    SELECT name FROM patients WHERE age >= 65
    ```
 - otherwise she queries the general population, resulting in many more records

    ```sql
    SELECT name FROM patients
    ```
- Adversary can know the answer to the first query by observing result size of the second
- Efficient system cannot return nearly the same number of records in both cases, thus, the adversary can distinguish
On impossibility of adaptive queries

Why is the query sequence $q_1, \ldots, q_m \in Q^m$ fixed?

- Suppose neighboring medical databases differ in one record with a rare diagnosis “Alzheimer’s disease”

- A medical professional, who is a user, not an adversary queries the database
 - for that diagnosis first
 \[\text{SELECT name FROM patients WHERE condition = 'ALZ'} \]
 - if there is a record, she queries the senior patients next
 \[\text{SELECT name FROM patients WHERE age >= 65} \]
 - otherwise she queries the general population, resulting in many more records
 \[\text{SELECT name FROM patients} \]

- Adversary can know the answer to the first query by observing result size of the second

- Efficient system cannot return nearly the same number of records in both cases, thus, the adversary can distinguish
On impossibility of adaptive queries

Why is the query sequence $q_1, \ldots, q_m \in Q^m$ fixed?

- Suppose neighboring medical databases differ in one record with a rare diagnosis “Alzheimer’s disease”
- A medical professional, who is a user, not an adversary queries the database
 - for that diagnosis first
    ```
    SELECT name FROM patients WHERE condition = 'ALZ'
    ```
 - if there is a record, she queries the senior patients next
    ```
    SELECT name FROM patients WHERE age >= 65
    ```
 - otherwise she queries the general population, resulting in many more records
    ```
    SELECT name FROM patients
    ```
- Adversary can know the answer to the first query by observing result size of the second
- Efficient system cannot return nearly the same number of records in both cases, thus, the adversary can distinguish
Single-Threaded ϵpsolute protocol

ORAM read requests

DP tree (range queries)

DP histogram (point queries)

Query: “Salaries $40K–$50K”

Search key	Record ID
Salary $40K | IDs 56, 46, 89
Salary $50K | IDs 85, 38, 63
... | ...

Record index

User

Client

Server

Storage

Server

User
Parallel Epsolute

- Single-threaded version is prohibitively slow, must parallelize

 Assume single-threaded solution generates $r = 1500$ real and $f = 500$ noisy records

- Split U and S state into m ORAMs, run as separate machines (assume $m = 4$)

- Partition records randomly (by ID) into m partitions, generate m inverted indexes

- What to do about DS?

No-γ method: DS per ORAM

- Composition of disjoint datasets: take max ϵ

 - Each ORAM incurs noise comparable to f

 - Win by splitting ORAM work r into m partitions and lose by multiplying noise f times m

 - That is, each ORAM is processing $\frac{r}{m} + f = 875$ records in parallel

γ-method: shared DS

- Same number of total records per ORAM

 - Generated noise is larger than f (say, $2f$)

 - But it is split among m ORAMs

 - That is, each ORAM is processing $\frac{r+2f}{m} = 625$ records in parallel
Parallel \mathcal{E}psolute

- Single-threaded version is prohibitively slow, must parallelize.
 Assume single-threaded solution generates $r = 1500$ real and $f = 500$ noisy records.
- Split \mathcal{U} and \mathcal{S} state into m ORAMs, run as separate machines (assume $m = 4$).
- Partition records randomly (by ID) into m partitions, generate m inverted indexes.
- What to do about $\mathcal{D}\mathcal{S}$?

No-γ method: $\mathcal{D}\mathcal{S}$ per ORAM

- Composition of disjoint datasets: take max ϵ.
- Each ORAM incurs noise comparable to f.
- Win by splitting ORAM work r into m partitions and lose by multiplying noise f times m.
- That is, each ORAM is processing $\frac{r}{m} + f = 875$ records in parallel.

γ-method: shared $\mathcal{D}\mathcal{S}$

- Same number of total records per ORAM.
- Generated noise is larger than f (say, $2f$).
- But it is split among m ORAMs.
- That is, each ORAM is processing $\frac{r + 2f}{m} = 625$ records in parallel.
Parallel \(\varepsilon \)psolute

- Single-threaded version is prohibitively slow, must parallelize

 Assume single-threaded solution generates \(r = 1500 \) real and \(f = 500 \) noisy records

- Split \(\mathcal{U} \) and \(\mathcal{S} \) state into \(m \) ORAMs, run as separate machines (assume \(m = 4 \))

- Partition records randomly (by ID) into \(m \) partitions, generate \(m \) inverted indexes

- What to do about \(DS \)?

No-\(\gamma \) method: \(DS \) per ORAM

- Composition of disjoint datasets: take max \(\epsilon \)
- Each ORAM incurs noise comparable to \(f \)
- Win by splitting ORAM work \(r \) into \(m \) partitions and lose by multiplying noise \(f \) times \(m \)
- That is, each ORAM is processing \(\frac{r}{m} + f = 875 \) records in parallel

\(\gamma \)-method: shared \(DS \)

- Same number of total records per ORAM
- Generated noise is larger than \(f \) (say, \(2f \))
- But it is split among \(m \) ORAMs
- That is, each ORAM is processing \(\frac{r+2f}{m} = 625 \) records in parallel
Parallel \(\mathcal{E} \)psolute diagram (with improvements)

1. Query: ages 18 to 21
2. True indices
3. Computing the amount of noise
4. ORAM requests:
 - ORAM IDs
 - Block IDs
5. ORAM GET requests:
6. Pruning fake records

- Trusted user party \(U \)
- Untrusted server party \(S \)

- ORAM requests
- KVS Store
- DP histogram
- DP tree
- Application
- B+ tree
- Client
- Lightweight ORAM machine
- User
Experiments: against other mechanisms

Different range-query mechanisms (log scale). Default setting: 10^6 4 KiB uniformly-sampled records with the range 10^4.
Experiments: scalability

Scalability measurements for Π_γ (shared \mathcal{DS}) and $\Pi_{\text{no-}\gamma}$ (\mathcal{DS} per ORAM)
Work-in-progress: private kNN queries
General idea

- **Model**: snapshot, query type: \(k\text{NN}\) in arbitrary dimensions
- **Input**: vector of real numbers, query: return \(k\) “closest” inputs to given vector

 Distance can be \(L_p\) (usually, Euclidean, \(p = 2\)) or inner (dot) product

- **Applications** range from similarity search to geographical search

 Document is a vector of words/features/topics, query is to find \(k\) most similar documents

 Object on a map is a 2D vector, query is to find \(k\) nearest locations

- **Approximate distance-comparison preserving encryption (DCPE) scheme** on input and queries

 \[
 \forall x, y, z \in X : \text{DIST}(x, y) < \text{DIST}(x, z) - \beta \implies \text{DIST}(f(x), f(y)) < \text{DIST}(f(x), f(z))
 \]

- Prove theoretically and observe empirically how accuracy of search and efficiency of attacks drop with higher security
General idea

• Model: snapshot, query type: \textit{kNN} in arbitrary dimensions
• Input: vector of real numbers, query: return \textit{k} “closest” inputs to given vector
 Distance can be L_p (usually, Euclidean, $p = 2$) or inner (dot) product
• Applications range from similarity search to geographical search
 Document is a vector of words/features/topics, query is to find k most similar documents
 Object on a map is a 2D vector, query is to find k nearest locations
• \textit{Approximate distance-comparison preserving encryption (DCPE) scheme} on input and queries
 \[\forall x, y, z \in X: \text{DIST}(x, y) < \text{DIST}(x, z) - \beta \implies \text{DIST}(f(x), f(y)) < \text{DIST}(f(x), f(z)) \]
• Prove theoretically and observe empirically how accuracy of search and efficiency of attacks drop with higher security
General idea

- Model: **snapshot**, query type: kNN in arbitrary dimensions
- Input: vector of real numbers, query: return k “closest” inputs to given vector

 Distance can be L_p (usually, Euclidean, $p = 2$) or inner (dot) product

- Applications range from similarity search to geographical search

 Document is a vector of words/features/topics, query is to find k most similar documents

 Object on a map is a 2D vector, query is to find k nearest locations

- **Approximate distance-comparison preserving encryption (DCPE) scheme** on input and queries

 $\forall x, y, z \in X : \text{DIST}(x, y) < \text{DIST}(x, z) - \beta \implies \text{DIST}(f(x), f(y)) < \text{DIST}(f(x), f(z))$

- Prove theoretically and observe empirically how accuracy of search and efficiency of attacks drop with higher security
General idea

- Model: snapshot, query type: \textit{kNN} in arbitrary dimensions
- Input: vector of real numbers, query: return \textit{k} “closest” inputs to given vector
 Distance can be \(L_p\) (usually, Euclidean, \(p = 2\)) or inner (dot) product
- Applications range from similarity search to geographical search
 Document is a vector of words/features/topics, query is to find \(k\) most similar documents
 Object on a map is a 2D vector, query is to find \(k\) nearest locations
- \textit{Approximate distance-comparison preserving encryption (DCPE) scheme} on input and queries

\[\forall x, y, z \in X : \text{DIST}(x, y) < \text{DIST}(x, z) - \beta \implies \text{DIST}(f(x), f(y)) < \text{DIST}(f(x), f(z)) \]

- Prove theoretically and observe empirically how accuracy of search and efficiency of attacks drop with higher security
General idea

- Model: **snapshot**, query type: **kNN** in arbitrary dimensions
- Input: vector of real numbers, query: return *k* “closest” inputs to given vector
 - Distance can be L_p (usually, Euclidean, $p = 2$) or inner (dot) product
- Applications range from similarity search to geographical search
 - Document is a vector of words/features/topics, query is to find *k* most similar documents
 - Object on a map is a 2D vector, query is to find *k* nearest locations
- **Approximate distance-comparison preserving encryption (DCPE) scheme** on input and queries
 \[\forall x, y, z \in \mathbb{X} : \text{DIST}(x, y) < \text{DIST}(x, z) - \beta \implies \text{DIST}(f(x), f(y)) < \text{DIST}(f(x), f(z)) \]
- Prove theoretically and observe empirically how accuracy of search and efficiency of attacks drop with higher security
WORK-IN-PROGRESS:
OBLIVIOUS JOINS
General idea

• Model: **persistent**, query type: **inner equi-JOIN**

• Input: two tables T_1 and T_2, query: return a cross-product of T_1 and T_2 where $T_1.k = T_2.k$

 We may also consider **SELECT JOIN: WHERE $T_1.k = T_2.k$ AND $T_1.a = 10**

• Challenge: produce JOIN result hiding both access pattern and result size

• Proposed solution:
 • use enclave (SGX) and oblivious primitives (sort, compaction)
 • construct index over join keys, add DP noise to it
 • partition the data by keys to fit a partition in the enclave
 • consolidate sparse keys as an optimization
 • do inner join within partition

Detailed Algorithm
General idea

- Model: **persistent**, query type: **inner equi-JOIN**
- Input: two tables T_1 and T_2, query: return a cross-product of T_1 and T_2 where $T_1.k = T_2.k$
 We may also consider `SELECT JOIN: WHERE T_1.k = T_2.k AND T_1.a = 10`
- Challenge: produce JOIN result hiding both access pattern and result size
- Proposed solution:
 - use enclave (SGX) and oblivious primitives (sort, compaction)
 - construct index over join keys, add DP noise to it
 - partition the data by keys to fit a partition in the enclave
 - consolidate sparse keys as an optimization
 - do inner join within partition
General idea

• Model: **persistent**, query type: **inner equi-JOIN**

• Input: two tables T_1 and T_2, query: return a cross-product of T_1 and T_2 where $T_1.k = T_2.k$

We may also consider:

```
SELECT JOIN: WHERE T_1.k = T_2.k AND T_1.a = 10
```

• **Challenge**: produce JOIN result hiding both access pattern and result size

• Proposed solution:
 • use enclave (SGX) and oblivious primitives (sort, compaction)
 • construct index over join keys, add DP noise to it
 • partition the data by keys to fit a partition in the enclave
 • consolidate sparse keys as an optimization
 • do inner join within partition
General idea

• Model: **persistent**, query type: **inner equi-JOIN**

• Input: two tables T_1 and T_2, query: return a cross-product of T_1 and T_2 where $T_1.k = T_2.k$

We may also consider **SELECT JOIN**: WHERE $T_1.k = T_2.k$ AND $T_1.a = 10$

• **Challenge**: produce **JOIN** result hiding both access pattern and result size

• **Proposed solution**:
 • use enclave (SGX) and oblivious primitives (sort, compaction)
 • construct index over join keys, add DP noise to it
 • partition the data by keys to fit a partition in the enclave
 • consolidate sparse keys as an optimization
 • do inner join within partition
Dissertation Prospectus

Secure and Efficient Query Processing in Outsourced Databases

Range Queries [19, 21], Point Queries [21], \(k \)NN Queries, JOIN Queries

Dmytro Bogatov
dmytro@bu.edu

Built from c87e98cc on December 24, 2021

Boston University
Graduate School of Arts and Sciences
Department of Computer Science
References

APPENDIX
<table>
<thead>
<tr>
<th>Scheme</th>
<th>Primitive usage</th>
<th>Ciphertext size, or state size</th>
<th>Leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Encryption</td>
<td>Comparison</td>
<td>(in addition to inherent total order)</td>
</tr>
<tr>
<td>BCLO [1]</td>
<td>n HG</td>
<td>none</td>
<td>$2n$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>\approx Top half of the bits</td>
</tr>
<tr>
<td>CLWW [3]</td>
<td>n PRF</td>
<td>none</td>
<td>$2n$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Most-significant differing bit</td>
</tr>
<tr>
<td>Lewi-Wu [13]</td>
<td>$\frac{2n}{d}$ PRP</td>
<td>$\frac{n}{2d}$ Hash</td>
<td>$\frac{n}{d} (\lambda + n + 2^{d+1}) + \lambda$</td>
</tr>
<tr>
<td>CLOZ [2]</td>
<td>n PRF</td>
<td>n PPH</td>
<td>$n \cdot h$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 PRP</td>
<td>Equality pattern of most-significant differing bit</td>
</tr>
<tr>
<td>FH-OPE [11]</td>
<td>1 Traversal</td>
<td>3 Traversals</td>
<td>$3 \cdot n \cdot N$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insertion order</td>
</tr>
</tbody>
</table>
Range query protocols

<table>
<thead>
<tr>
<th>Protocol</th>
<th>I/O requests</th>
<th>Leakage</th>
<th>Communication (result excluded)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Construction</td>
<td>Query</td>
<td>Construction</td>
</tr>
<tr>
<td>B+ tree with ORE</td>
<td>$\log_B \frac{N}{B}$</td>
<td>$\log_B \frac{N}{B} + \frac{r}{B}$</td>
<td>Same as ORE</td>
</tr>
<tr>
<td>Kerschbaum [12]</td>
<td>$\frac{N}{B}$</td>
<td>$\log_2 \frac{N}{B} + \frac{r}{B}$</td>
<td>Total order</td>
</tr>
<tr>
<td>POPE [14] warm</td>
<td>1</td>
<td>$\log_L \frac{N}{B} + \frac{r}{B}$</td>
<td>Partial order</td>
</tr>
<tr>
<td>POPE [14] cold</td>
<td></td>
<td>$\frac{r}{N/B}$</td>
<td>Fully hiding</td>
</tr>
<tr>
<td>Logarithmic-BRC [4]</td>
<td></td>
<td>r</td>
<td>Same as SSE</td>
</tr>
<tr>
<td>ORAM</td>
<td>$\log^2 \frac{N}{B}$</td>
<td>$\log_2 \frac{N}{B} \left(\log_B \frac{N}{B} + \frac{r}{B}\right)$</td>
<td>Fully hiding (access pattern)</td>
</tr>
</tbody>
</table>

Back to ORE
One of the experimental results

Query stage number of I/O requests
Access pattern is a sequence of memory accesses y, where each access consists of the memory location o, read r or write w operation and the data d to be written.

Oblivious RAM (ORAM) is a mechanism that hides the accesses pattern. More formally, ORAM is a protocol between the client C (who accesses) and the server S (who stores), with a guarantee that the view of the server is indistinguishable for any two sequences of the same lengths.

$$|y_1| = |y_2|$$

$$\text{VIEW}_S(y_1) \approx \text{VIEW}_S(y_2)$$

ORAM protocol

1: Client C

2: $y = (r, i, \perp)_{i=1}^{5}$

3: (client state) $\xrightarrow{\text{ORAM}(y)}$ (server state)

4: $\{d_1, d_2, d_3, d_4, d_5\}$

For example: Square Root ORAM [8], Hierarchical ORAM [9], Binary-Tree ORAM [16], Interleave Buffer Shuffle Square Root ORAM [22], TP-ORAM [17], Path-ORAM [18] and TaORAM [15]. ORAM incurs at least logarithmic communication overhead in the number of stored records. [9]
∀x, y, z ∈ X : DIST(x, y) < DIST(x, z) − β \implies DIST(f(x), f(y)) < DIST(f(x), f(z))

- The scheme is by Riddhi Ghosal and Adam O’Neil [7]
- Key generation: sample at random length multiplier s and seeds for samplers
- Encrypt: take input vector $x ∈ \mathbb{R}^d$
 - Sample nonce n
 - Using nonce and seeds, sample a point a on a β-radius d-dimensional ball
 - New vector is extended times s and points to a
- Decrypt: take encrypted vector $c ∈ \mathbb{R}^d$ and nonce n
 - Do same steps except shrink times s and remove ball component
∀x, y, z ∈ X: \text{DIST}(x, y) < \text{DIST}(x, z) - \beta \implies \text{DIST}(f(x), f(y)) < \text{DIST}(f(x), f(z))

- The scheme is by Riddhi Ghosal and Adam O’Neil [7]
- **Key generation**: sample at random length multiplier \(s\) and seeds for samplers
 - **Encrypt**: take input vector \(x \in \mathbb{R}^d\)
 - Sample nonce \(n\)
 - Using nonce and seeds, sample a point \(a\) on a \(\beta\)-radius \(d\)-dimensional ball
 - New vector is extended times \(s\) and points to \(a\)
 - **Decrypt**: take encrypted vector \(c \in \mathbb{R}^d\) and nonce \(n\)
 - Do same steps except shrink times \(s\) and remove ball component
∀x, y, z ∈ X : \text{DIST}(x, y) < \text{DIST}(x, z) - \beta \implies \text{DIST}(f(x), f(y)) < \text{DIST}(f(x), f(z))

- The scheme is by Riddhi Ghosal and Adam O’Neil [7]
- **Key generation**: sample at random length multiplier s and seeds for samplers
- **Encrypt**: take input vector \(x \in \mathbb{R}^d \)
 - Sample nonce \(n \)
 - Using nonce and seeds, sample a point \(a \) on a \(\beta \)-radius \(d \)-dimensional ball
 - New vector is extended times \(s \) and points to \(a \)
- **Decrypt**: take encrypted vector \(c \in \mathbb{R}^d \) and nonce \(n \)
 - Do same steps except shrink times \(s \) and remove ball component

Back to kNN
Component: DCPE

\[\forall x, y, z \in \mathbb{X} : \text{DIST}(x, y) < \text{DIST}(x, z) - \beta \implies \text{DIST}(f(x), f(y)) < \text{DIST}(f(x), f(z)) \]

- The scheme is by Riddhi Ghosal and Adam O’Neil [7]
- **Key generation**: sample at random length multiplier \(s\) and seeds for samplers
- **Encrypt**: take input vector \(x \in \mathbb{R}^d\)
 - Sample nonce \(n\)
 - Using nonce and seeds, sample a point \(a\) on a \(\beta\)-radius \(d\)-dimensional ball
 - New vector is extended times \(s\) and points to \(a\)
- **Decrypt**: take encrypted vector \(c \in \mathbb{R}^d\) and nonce \(n\)
 - Do same steps except *shrink* times \(s\) and *remove* ball component
• Dataset is 8.8M documents represented as vectors of 768 dimensions
 Thanks Hamed Zamani for the dataset
• Query is a 768-dimensional vector asking for $k = 1000$ closest (inner product) documents
• Original document set is a Text REtrieval Conference (TREC) test collection
 set of documents, set of topics (questions), and corresponding set of relevance judgments (right answers)
• FAISS [10]: GPU-enabled library for efficient similarity search and clustering of dense vectors
 Developed and maintained by Facebook AI
• General algorithm: for different β
 • Encrypt dataset with β
 • Encrypt queryset with β
 • Run queries with FAISS
 • Generate TREC metrics (using relevance judgments)
Component: TREC dataset and FAISS [10]

- Dataset is 8.8M documents represented as vectors of 768 dimensions
 Thanks Hamed Zamani for the dataset
- Query is a 768-dimensional vector asking for $k = 1000$ closest (inner product) documents
- Original document set is a Text REtrieval Conference (TREC) test collection set of documents, set of topics (questions), and corresponding set of relevance judgments (right answers)
- FAISS [10]: GPU-enabled library for efficient similarity search and clustering of dense vectors
 Developed and maintained by Facebook AI
- General algorithm: for different β
 - Encrypt dataset with β
 - Encrypt queryset with β
 - Run queries with FAISS
 - Generate TREC metrics (using relevance judgments)
Component: TREC dataset and FAISS [10]

- Dataset is 8.8M documents represented as vectors of 768 dimensions
 Thanks Hamed Zamani for the dataset
- Query is a 768-dimensional vector asking for \(k = 1000 \) closest (inner product) documents
- Original document set is a Text REtrieval Conference (TREC) test collection
 set of documents, set of topics (questions), and corresponding set of relevance judgments (right answers)
- FAISS [10]: GPU-enabled library for efficient similarity search and clustering of dense vectors
 Developed and maintained by Facebook AI
- General algorithm: for different \(\beta \)
 - Encrypt dataset with \(\beta \)
 - Encrypt queryset with \(\beta \)
 - Run queries with FAISS
 - Generate TREC metrics (using relevance judgments)
Component: TREC dataset and FAISS [10]

- Dataset is 8.8M documents represented as vectors of 768 dimensions
 Thanks Hamed Zamani for the dataset
- Query is a 768-dimensional vector asking for $k = 1000$ closest (inner product) documents
- Original document set is a Text REtrieval Conference (TREC) test collection
 set of documents, set of topics (questions), and corresponding set of relevance judgments (right answers)
- FAISS [10]: GPU-enabled library for efficient similarity search and clustering of dense vectors
 Developed and maintained by Facebook AI
- General algorithm: for different β
 - Encrypt dataset with β
 - Encrypt queryset with β
 - Run queries with FAISS
 - Generate TREC metrics (using relevance judgments)
Component: TREC dataset and FAISS [10]

- Dataset is 8.8M documents represented as vectors of 768 dimensions
 Thanks Hamed Zamani for the dataset
- Query is a 768-dimensional vector asking for $k = 1000$ closest (inner product) documents
- Original document set is a Text REtrieval Conference (TREC) test collection
 set of documents, set of topics (questions), and corresponding set of relevance judgments (right answers)
- FAISS [10]: GPU-enabled library for efficient similarity search and clustering of dense vectors
 Developed and maintained by Facebook AI
- General algorithm: for different β
 - Encrypt dataset with β
 - Encrypt queryset with β
 - Run queries with FAISS
 - Generate TREC metrics (using relevance judgments)
Intermediate results

TREC metrics, result set distance and difference, for running kNN search for $\beta \in \{0, 1, \ldots, 50\}$
Oblivious JOINs detailed algorithm

- Construct list L of the form $(k, n_1, \hat{n}_1, n_2, \hat{n}_2)$, with an element per distinct key plus noise k is a join key, n and \hat{n} are real and noisy numbers of records with that key in corresponding input table Noise sampled to a hierarchical sanitizer from a Laplacian distribution

- Client U sends sorted L and hierarchical sanitizer over noise counts to the server S
 Similar to ϵpsolute, adversary does not learn much from noisy counts

- Server S partitions L by k, so that partition size $(\hat{n}_1 + \hat{n}_2)$ is bounded and uniform Resulting mapping from keys to partitions $M(k) = i$ can be proven DP

- Consolidate sparse keys: ensure that each bin corresponds to at least U real keys
 Bin is collection of tuples for which we will do cross-product join

- Obliviously move and pad each bin/partition with dummy records
 Within each bin the data is sorted by input tables

- For each bin, do cartesian product
Oblivious JOINs detailed algorithm

- Construct list L of the form $(k, n_1, \hat{n}_1, n_2, \hat{n}_2)$, with an element per distinct key plus noise. k is a join key, n and \hat{n} are real and noisy numbers of records with that key in corresponding input table. Noise sampled to a hierarchical sanitizer from a Laplacian distribution.

- Client U sends sorted L and hierarchical sanitizer over noise counts to the server S. Similar to εpsolute, adversary does not learn much from noisy counts.

- Server S partitions L by k, so that partition size $(\hat{n}_1 + \hat{n}_2)$ is bounded and uniform. Resulting mapping from keys to partitions $M(k) = i$ can be proven DP.

- Consolidate sparse keys: ensure that each bin corresponds to at least U real keys. Bin is collection of tuples for which we will do cross-product join.

- Obliviously move and pad each bin/partition with dummy records. Within each bin the data is sorted by input tables.

- For each bin, do cartesian product.
Oblivious JOINs detailed algorithm

- Construct list \(L \) of the form \((k, n_1, \hat{n}_1, n_2, \hat{n}_2)\), with an element per distinct key plus noise
 - \(k \) is a join key, \(n \) and \(\hat{n} \) are real and noisy numbers of records with that key in corresponding input table
 - Noise sampled to a hierarchical sanitizer from a Laplacian distribution

- Client \(U \) sends sorted \(L \) and hierarchical sanitizer over noise counts to the server \(S \)
 - Similar to \(\varepsilon \)psolute, adversary does not learn much from noisy counts

- Server \(S \) partitions \(L \) by \(k \), so that partition size \((\hat{n}_1 + \hat{n}_2)\) is bounded and uniform
 - Resulting mapping from keys to partitions \(\mathcal{M}(k) = i \) can be proven DP

- Consolidate sparse keys: ensure that each bin corresponds to at least \(U \) real keys
 - Bin is collection of tuples for which we will do cross-product join

- Obliviously move and pad each bin/partition with dummy records
 - Within each bin the data is sorted by input tables

- For each bin, do cartesian product

[Back to Oblivious Joins]
Oblivious JOINs detailed algorithm

• Construct list \(L \) of the form \((k, n_1, \hat{n}_1, n_2, \hat{n}_2)\), with an element per distinct key plus noise

 \(k \) is a join key, \(n \) and \(\hat{n} \) are real and noisy numbers of records with that key in corresponding input table

 Noise sampled to a hierarchical sanitizer from a Laplacian distribution

• Client \(U \) sends sorted \(L \) and hierarchical sanitizer over noise counts to the server \(S \)

 Similar to \(\mathcal{E}pso\)lute, adversary does not learn much from noisy counts

• Server \(S \) partitions \(L \) by \(k \), so that partition size \((\hat{n}_1 + \hat{n}_2)\) is bounded and uniform

 Resulting mapping from keys to partitions \(\mathcal{M}(k) = i \) can be proven DP

• Consolidate sparse keys: ensure that each \(bin \) corresponds to at least \(U \) real keys

 \(Bin \) is collection of tuples for which we will do cross-product join

• Obliviously move and pad each bin/partition with dummy records

 Within each bin the data is sorted by input tables

• For each bin, do cartesian product
Oblivious JOINs detailed algorithm

- Construct list \(L \) of the form \((k, n_1, \hat{n}_1, n_2, \hat{n}_2)\), with an element per distinct key plus noise.
 - \(k \) is a join key, \(n \) and \(\hat{n} \) are real and noisy numbers of records with that key in corresponding input table.
 - Noise sampled to a hierarchical sanitizer from a Laplacian distribution.

- Client \(\mathcal{U} \) sends sorted \(L \) and hierarchical sanitizer over noise counts to the server \(\mathcal{S} \).
 - Similar to \(\mathcal{E}psolute \), adversary does not learn much from noisy counts.

- Server \(\mathcal{S} \) partitions \(L \) by \(k \), so that partition size \((\hat{n}_1 + \hat{n}_2)\) is bounded and uniform.
 - Resulting mapping from keys to partitions \(\mathcal{M}(k) = i \) can be proven DP.

- Consolidate sparse keys: ensure that each bin corresponds to at least \(U \) real keys.
 - Bin is collection of tuples for which we will do cross-product join.

- Obliviously move and pad each bin/partition with dummy records.
 - Within each bin the data is sorted by input tables.

- For each bin, do cartesian product.
Oblivious JOINs detailed algorithm

- Construct list L of the form $(k, n_1, \hat{n}_1, n_2, \hat{n}_2)$, with an element per distinct key plus noise k is a join key, n and \hat{n} are real and noisy numbers of records with that key in corresponding input table Noise sampled to a hierarchical sanitizer from a Laplacian distribution
- Client U sends sorted L and hierarchical sanitizer over noise counts to the server S
 Similar to Epsolute, adversary does not learn much from noisy counts
- Server S partitions L by k, so that partition size $(\hat{n}_1 + \hat{n}_2)$ is bounded and uniform
 Resulting mapping from keys to partitions $M(k) = i$ can be proven DP
- Consolidate sparse keys: ensure that each bin corresponds to at least U real keys
 Bin is collection of tuples for which we will do cross-product join
- Obliviously move and pad each bin/partition with dummy records
 Within each bin the data is sorted by input tables
- For each bin, do cartesian product