
BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

SECURE AND EFFICIENT QUERY PROCESSING IN

OUTSOURCED DATABASES

by

DMYTRO BOGATOV

B.S., Worcester Polytechnic Institute, 2017
M.S., Boston University, 2019

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2022

© 2022 by
DMYTRO BOGATOV
All rights reserved

Approved by

First Reader Approved

George Kollios, Ph.D.

Professor of Computer Science

Second Reader Approved

Leonid Reyzin, Ph.D.

Professor of Computer Science

Third Reader Aṗf̄flp˚r`o“vfle´dffl
Manos Athanassoulis, Ph.D.

Assistant Professor of Computer Science

Fourth Reader �
°� �pro¶	�¤�

Adam O’Neil, Ph.D.

Assistant Professor of Computer Science

University of Massachusetts — Amherst

Ask not what your country can do for you —
ask what you can do for your country.

JOHN FITZGERALD KENNEDY

iv

Dedication

I dedicate my dissertation work to my wife, my parents and the brave defenders of

Ukraine. Dasha, love of my life, thank you for supporting me since the very first day

of the program, through the long distance, once-in-a-century world-wide health crisis

and the war. It was with your help that I was able to come so far. A special feeling

of gratitude to my loving parents, Kostiantyn and Nataliia, whose help early in my

academic career was critical and enabled my doctorate program in the first place,

and whose support never waned to this day. Lastly, my heart and my thoughts go to

the brave people of Ukraine, who are heroically defending the Motherland from the

Russian invasion with their lives. We are with you, physically and virtually, in Lviv

and Mariupol, in Kharkiv and in Kyiv. My sincere hope, my wish, is that this work

will contribute, however little, to the cause of my beloved nation. Слава Українi!

v

Acknowledgments

First and foremost, I want to thank my advisor, George Kollios, for his guidance and

continued support throughout my doctorate journey, from the day he accepted me

to his lab to this moment. I am honored to call him and his family my friends. I

also thank Leo Reyzin for the time and effort he spent helping me with my work,

and for the many cups of coffee and long life talks we have had over these years. I

want to especially note the many hours-long philosophical discussions with Manos

Athanassoulis — the discussions I truly enjoyed. In the heat of our debates we have

lived up to the Ph. part of our degrees. My special thanks go to Adam O’Neil

for his countless contributions to my works. He has been an invaluable co-author,

contributor, reviewer and friend.

I would like to express my gratitude to my closest ally in this life, my beloved

wife, Daria Bogatova. There is not a single piece of writing I did without her review,

not a single figure I crafted without her keen eye refining the tiniest details, from

fonts to colors. Even the source code of this very thesis has been branched off from

her Bachelor work [Bog21], and the names of my systems, Epsolute and k-anon are

her inventions. She has always been the first to listen to my ideas, and the first to

support them unconditionally.

I would particularly like to thank my bosom friend, roommate and fellow Doctor,

Oleksandr Narykov. Living in Boston will not be the same without him, and I hope

his career will bring him here in no time. I also want to thank my good friend and

fellow BU alumnus, Vasili Ramanishka. I miss our arguments and discussions in the

middle of a night.

My deepest appreciation goes to my colleagues and co-authors, Georgios Kellaris,

Björn Tackmann, Kaoutar Elkhiyaoui, Angelo De Caro, Kobbi Nissim and Hamed

Zamani. It has been a great pleasure and a rewarding experience working with you.

vi

Your input in my work has been indispensable. I am deeply grateful to my fellow

Amazonians, Kiran Chinta, Sriram Krishnamurthy, Naresh Chainani, Ramchandra

Kulkarni and Abhishek Rai Sharma with whom I shared a number of internships. I

am very excited to join the team full-time!

I owe my deepest gratitude to my family, my parents, grandma and a little sister.

I thank you for always being there for me. For attending my defense and admiring my

presentation even though the content may have been very technical and in a foreign

language. I am also infinitely glad that my family has expanded during my doctorate

program. I thank Dasha’s side of the family, in the similar composition of parents,

grandma and a little sister, for accepting me and supporting me through my journey.

Last but not least, I want to note my little fluffy friend, Pixel. My years of the

program would not have been the same without him sleeping on my keyboard.

vii

SECURE AND EFFICIENT QUERY PROCESSING IN

OUTSOURCED DATABASES

DMYTRO BOGATOV

Boston University, Graduate School of Arts and Sciences, 2022

Major Professor: George Kollios, Ph.D.
Professor of Computer Science

ABSTRACT

As organizations struggle with processing vast amounts of information, outsourcing

sensitive data to third parties becomes a necessity. Various cryptographic techniques

are used in outsourced database systems to ensure data privacy while allowing for

efficient querying. This thesis proposes a definition and components of a new secure

and efficient outsourced database system, which answers various types of queries, with

different privacy guarantees in different security models.

This work starts with the survey of five order-preserving and order-revealing en-

cryption schemes that can be used directly in many database indices, such as the

B+ tree, and five range query protocols with various tradeoffs in terms of security

and efficiency. The survey systematizes the state-of-the-art range query solutions in

a snapshot adversary setting and offers some non-obvious observations regarding the

efficiency of the constructions.

The thesis then proceeds with Epsolute — an efficient range query engine in a

persistent adversary model. In Epsolute, security is achieved in a setting with a much

stronger adversary where she can continuously observe everything on the server, and

leaking even the result size can enable a reconstruction attack. Epsolute proposes a

viii

definition, construction, analysis, and experimental evaluation of a system that prov-

ably hides both access pattern and communication volume while remaining efficient.

The dissertation concludes with k-anon — a secure similarity search engine in a

snapshot adversary model. The work presents a construction in which the security of

kNN queries is achieved similarly to OPE / ORE solutions — encrypting the input

with an approximate Distance Comparison Preserving Encryption scheme so that

the inputs, the points in a hyperspace, are perturbed, but the query algorithm still

produces accurate results. Analyzing the solution, we run a series of experiments to

observe the tradeoff between search accuracy and attack effectiveness. We use TREC

datasets and queries for the search, and track the rank quality metrics such as MRR

and nDCG. For the attacks, we build an LSTM model that trains on the correlation

between a sentence and its embedding and then predicts words from the embedding.

We conclude on viability and practicality of the solution.

ix

Contents

Contents x

List of Algorithms xvi

List of Tables xvii

List of Figures xix

List of Acronyms xx

1 Introduction 1

1.1 Model . 2

1.1.1 Outsourced database model 2

1.1.2 Security model . 3

1.1.3 Query types . 4

1.2 Thesis structure . 5

1.2.1 Works completed during the Ph.D. program 5

2 Background 7

2.1 Symmetric encryption . 7

2.1.1 Security . 7

2.1.2 Components . 9

2.2 Oblivious Random Access Machine 10

2.2.1 PathORAM . 11

2.3 Differential Privacy . 12

2.3.1 DP sanitizers . 14

x

Answering point and range queries with differential privacy . . 15

Composition . 15

2.4 Trusted Execution Environments . 16

2.4.1 Software Guard Extensions . 17

2.4.2 Issues with SGX . 18

3 Related work 19

3.1 Range query security in a snapshot model 19

3.2 Range query security in a persistent model 20

3.2.1 Obliviousness and volume-hiding without enclave 21

3.2.2 Enclave-based solutions . 22

3.3 kNN query security in a snapshot model 22

4 Range queries in the snapshot model 25

4.1 Introduction . 26

4.2 Security Perspective . 28

4.2.1 A note on variable-length inputs 30

4.3 OPE and ORE Schemes . 30

4.3.1 BCLO OPE [BCLO09] . 31

Security . 32

Analysis and implementation challenges 32

4.3.2 CLWW ORE [CLWW16] . 33

Security . 33

Analysis and implementation challenges 34

4.3.3 Lewi-Wu ORE [LW16] . 34

Security . 35

Analysis and implementation challenges 35

4.3.4 CLOZ ORE [Cas+18] . 36

xi

Security . 37

Analysis and implementation challenges 37

4.3.5 FH-OPE [Ker15] . 38

Security . 39

Analysis and implementation challenges 39

4.4 Secure Range Query Protocols . 40

4.4.1 Range query protocol from ORE 42

Security . 43

4.4.2 Kerschbaum-Tueno [KT19] . 43

Security . 43

Analysis and implementation challenges 44

4.4.3 POPE [RACY16] . 45

Security . 45

Analysis and implementation challenges 46

4.4.4 Logarithmic-BRC [Dem+16] 47

Security . 48

Analysis and implementation challenges 49

4.4.5 The two extremes . 50

No encryption . 50

ORAM . 50

4.5 Evaluation . 51

4.5.1 Implementation . 53

Primitives . 54

Schemes and protocols . 55

Simulations . 55

4.5.2 Setup . 57

xii

4.5.3 Results . 57

Primitive usage by schemes 57

Benchmarks of schemes and primitives 58

Protocols . 59

4.6 Remarks and conclusion . 62

5 Range queries in the persistent model 64

5.1 Introduction . 65

5.2 Differentially private outsourced database systems 68

5.2.1 Adversarial model . 68

On impossibility of adaptive queries 69

5.2.2 Query types . 70

5.2.3 Measuring Efficiency . 71

5.3 Epsolute . 72

5.3.1 General construction . 72

5.3.2 Security . 74

5.3.3 Efficiency . 75

5.3.4 Extending to multiple attributes 76

5.3.5 Epsolute for point queries . 77

5.3.6 Epsolute for range queries . 77

5.4 An efficient Parallel Epsolute . 79

5.4.1 No-γ-method: DP structure per ORAM 80

5.4.2 γ-method: shared DP structure 81

5.4.3 Practical improvements . 82

ORAM request batching . 82

Lightweight ORAM servers 83

5.5 Experimental Evaluation . 85

xiii

5.5.1 Data sets . 86

5.5.2 Default setting . 87

5.5.3 Experiment stages . 88

5.5.4 RDBMS, Linear Scan and Shrinkwrap 88

5.5.5 Results and Observations . 90

5.6 Conclusion and Future Work . 99

6 kNN queries in the snapshot model 100

6.1 Introduction . 100

6.2 Distance Comparison Preserving Encryption 102

6.2.1 DCPE construction . 102

6.2.2 DCPE security . 104

6.2.3 DCPE implementation and benchmarks 106

6.3 kNN search accuracy . 107

6.3.1 Secure kNN protocol . 107

6.3.2 Experimental evaluation . 108

Ranking quality metrics . 109

6.3.3 Results for varying β . 110

6.4 Security against attacks . 112

6.4.1 Black-box model inversion attack [SR20] 113

6.4.2 Experimental evaluation . 114

Attack efficiency metrics . 115

Baselines . 116

Public model . 118

Private model . 119

6.5 Search accuracy against security tradeoff 120

6.6 Conclusions . 122

xiv

Future Work . 122

7 Conclusions and Future Work 123

Practicality and reproducibility 123

Practicality of property-preserving encryption 124

Practicality of using “heavy” primitives and protocols 124

More query types . 125

A Abstract of [BCET21] 126

B Abstract of [NBK19] 127

Bibliography 128

Curriculum Vitæ 150

xv

List of Algorithms

1 Epsolute protocol . 71

2 Parallel Epsolute for Πγ . 78

3 DCPE scheme . 103

xvi

List of Tables

4.1 Primitive usage by OPE / ORE schemes 41

4.2 Performance of the range query protocols 52

5.1 Epsolute storage usage for varying data, record and domain sizes . . . 93

5.2 Improvements over parallel Epsolute 97

6.1 DCPE implementation benchmarks 106

6.2 Inversion attack performance for the private model experiments . . . 120

xvii

List of Figures

2·1 Attack surface with TEE . 16

4·1 OPE / ORE schemes benchmark . 54

4·2 Cryptographic primitives benchmark 54

4·3 Number of I/O requests for different protocols and data distributions 56

4·4 Communication size for different protocols and data distributions . . 56

4·5 Communication volume for different protocols and data distributions 57

4·6 Scalability: number of I/O requests 60

4·7 Scalability: communication volume 60

4·8 Performance for different query sizes 61

4·9 Performance over time (queries) . 61

5·1 Epsolute construction . 74

5·2 Parallel Epsolute construction . 84

5·3 Different range-query mechanisms . 91

5·4 Linear scan performance . 92

5·5 Privacy budget ϵ . 94

5·6 Effect of ϵ . 94

5·7 Selectivity . 94

5·8 Record size . 95

5·9 Data size . 95

5·10 Domain size . 95

5·11 Data distribution . 96

xviii

5·12 Query distribution . 96

5·13 Scalability measurements for Πγ and Πno−γ 97

5·14 Query overhead when using multiple attributes 98

6·1 Schematic description of DCPE . 105

6·2 Search accuracy for β ∈ {0.0, . . . , 50.0} 111

6·3 Search accuracy for β ∈ {0.0, . . . , 5.0} 112

6·4 Inversion attack F1 score for different epochs 117

6·5 Inversion attack accuracy metrics for different β for TREC dataset . . 119

6·6 The correlation of search accuracy and the attack efficiency with β . . 121

xix

Acronyms

kNN k-nearest-neighbor
AES Advanced Encryption Standard
AP Access Pattern
API Application Programming Interface
ASPE Asymmetric Scalar-Product-Preserving Encryption
AWS Amazon Web Services
BERT Bidirectional Encoder Representation from Transformer
BRC Best Range Cover
CBC Cipher Block Chaining
CCA Chosen Ciphertext Attack
CDF Cumulative Distribution Function
CDP-ODB Computationally DP Outsourced Database System
CPA Chosen Plaintext Attack
CPU Central Processing Unit
CTR Counter
CV Communication Volume
DCPE Distance Comparison Preserving Encryption
DP Differential Privacy
EMP-toolkit Efficient MultiParty Computation Toolkit
FAISS Facebook AI Similarity Search
FPGA Field-Programmable Gate Array
GCM Galois / Counter
GCP Google Cloud Platform
GPU Graphics Processing Unit
HG Hypergeometric Probability Distribution
HIPAA Health Insurance Portability and Accountability Act
I/O Input / Output
ID Identifier
IND-CCA Indistinguishability under Chosen Ciphertext Attack
IND-CPA Indistinguishability under Chosen Plaintext Attack
IV Initialization Vector
KVS Key-Value Store
LPA Laplacian Perturbation Algorithm
LSTM Long Short-Term Memory

xx

ML Machine Learning
MLC Multi-Label Classification
MRR Mean Reciprocal Rank
MSP Multi-Set Prediction
nDCG Normalized Discounted Cumulative Gain
NIST National Institute of Standards and Technology
NLP Natural Language Processing
OPE Order-Preserving Encryption
ORAM Oblivious Random Access Machine
ORE Order-Revealing Encryption
OS Operating System
PBC Pairing-Based Crypto
PPH Property-Preserving Hash
PRF Pseudo-Random Function
PRG Pseudo-Random Generator
PRP Pseudo-Random Permutation
RAM Random Access Memory
RDBMS Relational Database Management System
SGX Software Guard Extensions
SHA Secure Hash Algorithm
SQL Structured Query Language
SSD Solid State Drive
SSE Searchable Symmetric Encryption
TEE Trusted Execution Environment
TREC Text Retrieval Conference
VM Virtual Machine
XEX XOR-Encrypt-XOR
XML Extensible Markup Language
XTS XEX-based tweaked-codebook with ciphertext stealing

xxi

1

Chapter 1

Introduction

As the organizations struggle with demands for storage and processing of their data,

they increasingly turn to third parties for outsourcing capabilities. A number of

companies including Amazon (AWS), Microsoft (Azure) and Google (GCP) offer

outsourced database solutions to individuals and other businesses. This model is

lucrative because not only do the clients pay exactly for what they use in terms of

pure computational resources, but also the cloud takes care of the entire deployment

process, including availability, scalability, replication, and, most importantly, security.

The cloud business model provides resources on-demand — from bare-bones VMs to

database-as-a-service products.

While the cloud providers typically have strict customer data privacy policies

and even offer server-side encryption-at-rest services, the clients still have to trust

the provider with their plaintext data. Server-side encryption-at-rest by definition

requires the provider to know the encryption key to manipulate the data, even if

the key is ephemeral and is not stored in the cloud permanently. Moreover, cloud

providers in general, and customers’ VMs in particular, may be vulnerable to external

attacks — from snapshot-level attacks, in which the adversary obtains a copy of

the VM memory, to more devastating persistent attacks, in which the adversary

continuously monitors the VM processes.

Protecting the private information beyond cloud provider guarantees typically

requires encrypting it in a way that preserves the ability to process it. A line of

2

research targets securing outsourced database systems, but often achieves protection

at the cost of efficiency too high for a solution to be viable for practical applications.

In this thesis, we will cover the constructions that are used to answer different types

of database queries in the outsourced model while providing both provable security

and practical efficiency guarantees.

1.1 Model

In this work, we consider an outsourced database system model, a notion first intro-

duction in [HILM02], adapted from [KKNO16] and [Bog+21].

1.1.1 Outsourced database model

Similar to [Bog+21], a database is abstracted as a collection of n records r, each

with a unique identifier rID, associated with search keys SK: D = {(r1, rID1 , SK1), . . . ,

(rn, r
ID
n , SKn)}. All records are assumed to have an identical fixed bit-length, and

the search keys are elements of some domain X . A query is modeled as a predicate

q ∈ Q : X → {0, 1}. Evaluating a query q on a database D results in q(D) = {ri :
q(SKi) = 1}, all records whose search keys satisfy q .

Formally, an outsourced database system consists of two protocols between a

stateful user U, who owns the data, and an untrusted stateful server S, to whom

these data are outsourced. In setup protocol Πsetup, U receives as input a database

D = {(r1, rID1 , SK1), . . . , (rn, r
ID
n , SKn)} and S may optionally output a data structure

DS. In query protocol Πquery, U receives a query q ∈ Q, S receives DS produced in

the setup protocol, and U outputs the result of the query q(D). Both parties may

update their internal states. We call a system correct if it holds with overwhelming

probability over the randomness of the above runs that running Πsetup and Πquery on

the corresponding inputs yields the correct result {ri : q(SKi) = 1}.

3

1.1.2 Security model

In an outsourced database system we are not aiming for perfect security, because

the stronger the data protection guarantees are the harder it is to manipulate these

data, the less efficient and functional the system becomes. There will always be

some leakage, and our goal is to quantify, analyze and reduce it, while retaining the

system’s performance and usability. In terms of security models, we define two types

of adversaries — a snapshot and a persistent adversary.

As the name suggests, a snapshot adversary can see a “snapshot” of the server’s

data at multiple points in time. One can think of such an attack as if someone steals

a hard drive or accesses a backup. Formally, A knows S state at all stages of the

protocol.

A persistent adversary is stronger in that she monitors the server continuously.

Therefore, she can see the same information as the snapshot adversary plus the net-

work traffic and the access pattern. Such adversary can be thought of as a malicious

software (virus) that runs as a background process with broad permissions. Formally,

on top of the S state, A knows the size and content of S communication and the

sequence of accesses S makes to its internal state at all protocol stages.

Intuitively, one can think that encrypting records should protect the data. De-

pending on how the records are encrypted (i.e., whether the symmetric or property-

preserving encryption is used), this approach can mitigate the snapshot adversary.

Persistent adversary, however, can observe the communication size even if the traf-

fic itself is encrypted, and can see the access pattern even if the records are pro-

tected. It has been shown that the knowledge of access pattern [HMCK12; IKK14;

CGPR15; NKW15; KKNO16; Bin+18; GRS17; IKK12; LMP18] or communication

volume [KKNO16; KPT20; LMP18; GLMP18; GJW19] alone can enable a series of

reconstruction attacks.

4

Note that both adversaries are honest-but-curios — they only observe and never

interfere. Denial-of-service attacks and integrity protection are out of scope of this

work.

1.1.3 Query types

The type of query q is deliberately left abstract. The outsourced database system

assumes that a query contains a way (a predicate) to select only the records whose

search keys satisfy it. In this work, we consider the following types of queries.

A point query. This query selects records whose key is equal to a given value. The

domain of the point value does not have to be ordered; it can be categorical, like color

names. The relevant SQL query can be

SELECT * FROM t1 WHERE color = ’blue’.

A range query. This query selects records whose keys lie between two values from

an ordered domain. The relevant SQL query can be

SELECT * FROM t1 WHERE age BETWEEN 18 and 65.

A kNN query. k-nearest-neighbor query selects k records whose keys are “closest”

to a given value. This query type requires a definition of distance metric over the

domain of search keys, for example, simple Euclidean distance. The relevant SQL

query can be

SELECT * FROM t1 ORDER BY location <-> ’(29.9691,-95.6972)’ LIMIT 5.

5

1.2 Thesis structure

In Chapter 2, we will cover the building blocks that are used in the outsourced

database systems. These blocks include symmetric encryption, ORAM and Differen-

tial Privacy. Chapter 3 includes the overview of approaches that provide the privacy

and/or security in the outsourced setting. The chapter also includes the overview of

the attacks against the mechanisms. Chapter 4 analyses in detail the range query

mechanisms in the snapshot adversary model. The chapter offers a comparative eval-

uation of five Order-Revealing Encryption schemes and five secure range query proto-

cols [BKR19]. Chapter 5 proposes a novel solution for the range queries in the persis-

tent adversary model, Epsolute [BKR19]. In Chapter 6, we describe k-anon [BKOZ22]

— a mechanism to answer similarity search (i.e., k-nearest-neighbor) queries in a snap-

shot adversary setting using a type of property-preserving encryption similar to OPE.

In the chapter we describe the encryption method, the set of experiments to empir-

ically measure the search accuracy and the level of protection against the attacks.

The source code of this thesis is publicly available.1

1.2.1 Works completed during the Ph.D. program

[BKR19] Dmytro Bogatov, George Kollios, and Leonid Reyzin. “A compara-

tive evaluation of order-revealing encryption schemes and secure range-

query protocols”. In: Proceedings of the VLDB Endowment 12.8 (2019),

pp. 933–947. doi: 10.14778/3324301.3324309

[Bog+21] Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim,

and Adam O’Neill. “Epsolute: Efficiently Querying Databases While

Providing Differential Privacy”. In: Proceedings of the 2021 ACM SIG-
1The thesis has been compiled from dbogatov/doctoral-thesis@0796b906 on September 15,

2022.

https://doi.org/10.14778/3324301.3324309
https://github.com/dbogatov/doctoral-thesis/commit/0796b906

6

SAC Conference on Computer and Communications Security — CCS

’2021. 2021. doi: 10.1145/3460120.3484786

[BKOZ22] Dmytro Bogatov, George Kollios, Adam O’Neill, and Hamed Zamani.

“k-anon: Secure Similarity Search in Outsourced Databases”. Apr. 2022

[BCET21] Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoui, and Björn

Tackmann. “Anonymous Transactions with Revocation and Auditing

in Hyperledger Fabric”. In: International Conference on Cryptology and

Network Security. Springer. 2021. doi: 10.1007/978-3-030-92548-

2_23

[NBK19] Oleksandr Narykov, Dmytro Bogatov, and Dmitry Korkin. “DIS-

POT: a simple knowledge-based protein domain interaction statistical

potential”. In: Bioinformatics 35.24 (July 2019), pp. 5374–5378. doi:

10.1093/bioinformatics/btz587

The works [BKR19; Bog+21; BKOZ22] are discussed in Chapters 4 to 6 respec-

tively. The other two works [BCET21; NBK19] fall outside of scope of this thesis.

[BCET21] proposes an imporved anonymous delegatable credential scheme and its

novel extensions, auditability and revocation, along with the instantiation and com-

prehensible set of experiments, see the abstract in Appendix A. [NBK19] is from the

domain of Bioinformatics, it offers a knowledge-based statistical potential that esti-

mates the propensity of an interaction between a pair of protein domains, see the

abstract in Appendix B. I also want to note the works I have completed on the route

to my doctorate program [Bog17; BH16; NBXO15].

https://doi.org/10.1145/3460120.3484786
https://doi.org/10.1007/978-3-030-92548-2_23
https://doi.org/10.1007/978-3-030-92548-2_23
https://doi.org/10.1093/bioinformatics/btz587

7

Chapter 2

Background

In this section, we will go over the building blocks required to construct the out-

sourced database systems and their components that we will discuss in the next chap-

ters. These prerequisites include the symmetric encryption, ORAMs and PathORAM

[Ste+13] in particular, Differential Privacy and DP sanitizers, and finally, Trusted

Execution Environments. Some of the following sections were paraphrased or taken

verbatim from my published work [BKR19; Bog+21].

2.1 Symmetric encryption

Symmetric encryption scheme is a tuple of algorithms E = {KeyGen,Enc,Dec}
with the following properties. E.KeyGen

(
1λ
)
→ k is a randomized algorithm that

on a security parameter 1λ returns a key that will be used for both encryption and

decryption. E.Enc (m) → c is a randomized algorithm that on a plaintext message

m ∈ {0, 1}∗ produces its ciphertext c ∈ {0, 1}∗. E.Dec (c) → m is a deterministic

algorithm that on a ciphertext c ∈ {0, 1}∗ produces its original plaintext message

m ∈ {0, 1}∗.

2.1.1 Security

The security of the symmetric encryption is typically defined as the indistinguisha-

bility under a certain attack. The definition is structured around the game between

8

the challenger and the adversary A. The challenger fixes one of the two “worlds”, left

or right, and the adversary wins the game if she can reliably tell which world it was.

A weaker security definition, Indistinguishability under Chosen Plaintext Attack

(IND-CPA), intuitively, requires that the ciphertext leaks nothing about the plaintext.

To formalize the requirement, the adversary can give the challenger a set of plaintext

pairs to encrypt, and the challenger responds with a set of ciphertexts where the left

or the right part was encrypted. The adversary can then use any (polynomial-time)

algorithm over the ciphertexts and make a guess of whether the left or the right part

was encrypted. The claim is, if there is anything that the ciphertext leaks about

the plaintext, there exists an adversary who will win. The security claim is therefore

contrapositive — the scheme is IND-CPA secure iff there is no such adversary that

wins the game.

IND-CPA security is not by itself sufficient since it does not account for the de-

cryption part of the scheme. There are known attacks that decrypt the plaintext

(i.e., defeat the encryption) if the adversary can trigger the decryption and observe

the process or the result (see padding attack [Vau02] and XML encryption attack

[JS11]).

The stronger definition, Indistinguishability under Chosen Ciphertext Attack (IND-

CCA), captures the decryption component. It extends the IND-CPA game in that

the adversary can now request the challenger to decrypt any ciphertext of her choice

except the ones that the challenger himself encrypted for the adversary. The adver-

sary still outputs a guess of the two worlds and wins if reliably guesses correctly. Note

that in this game if the decryption can fail for any reason, or even if A can observe

any difference in execution for different inputs, the scheme is insecure. Therefore,

IND-CCA immediately rules out the aforementioned attacks [Vau02; JS11].

9

2.1.2 Components

Note that for the practical purposes we define the encryption algorithm as random-

ized — producing different ciphertext for the same plaintext on every invocation.

While this is how the symmetric encryption scheme is used in applications, formally,

producing the deterministic ciphertext and randomizing it are different operations.

The randomness is produced independently, typically using a Pseudo-Random

Generator (PRG), and is used for both secrecy and integrity (which is necessary for

CCA security). After obtaining the random bits, the algorithm repeatedly uses the

block cipher (formally, a Pseudo-Random Permutation (PRP)), with the number of

invocations linear in the message length. How the randomness and the message are

combined is defined by the mode of operation and differs from one encryption scheme

to another. Typically, the randomness comes in a form of a block, an Initialization

Vector (IV), filled with random bits. The mode of operation then defines how the

blocks and the IV are combined together.

In practical systems, the ciphertext is then broken up into components, like the

ciphertext material itself, the IV (varies by the scheme), the version of the key, etc.

Also note that the encryption scheme key has a maximum number of times it can be

used for encryption (its operational lifetime).

When it comes to the real-world encryption systems, we use standardized primi-

tives — a block cipher (PRP), a Pseudo-Random Generator and a mode of operation.

Advanced Encryption Standard (AES) [Dwo+01] is a NIST-standardized block ci-

pher, which operates on 128-bit blocks. NIST also offers recommendations for random

number generator mechanisms [BK15], constructions [BK16] and sources of entropy

[Tur+18]. Lastly, some of the commonly used modes of operation are CBC and CTR

[Dwo01] modes for general-purpose encryption, GCM [Dwo07] for an authenticated

10

encryption and XTS [HH19] for encryption of data on block-oriented devices (e.g.,

disks).

2.2 Oblivious Random Access Machine

Informally, Oblivious Random Access Machine (ORAM) is a mechanism that lets the

users hide their access pattern to remote storage. An adversarial server can monitor

the actual accessed locations, but she cannot tell a read from a write, the content of

the block or even whether the same logical location is being referenced. The notion

was first defined by Goldreich [Gol87] and Goldreich and Ostrovsky [GO96].

More formally, a (η1, η2)-ORAM protocol is a two-party protocol between a client

C and a server S who maintains the storage in a form of array of blocks. In each

round, the client C has input (o, a, d), where o is an access type (r or w), a is a

storage block address and d is a new data value, or ⊥ for read operation. The input

of S is the current storage array. Via the protocol, the server updates the storage

or returns to U the data stored at the requested block, respectively. We speak of a

sequence of such operations as a program y being executed under the ORAM.

An ORAM protocol must satisfy correctness and security. Correctness requires

that C obtains the correct output of the computation except with at most probability

η1. For security, we require that for every client C there exists a simulator SimORAM

which provides a simulation of the server’s view in the above experiment given only

the number of operations. That is, the output distribution of SimORAM(c) is indis-

tinguishable from ViewS with probability at most η2 after c protocol rounds. Note

that the ORAM protocols typically differ in the way the storage is organized and ma-

nipulated, but are similar in that the records or blocks are symmetrically encrypted

(see Section 2.1).

11

ORAM protocols are generally stateful, after each execution the client and server

states are updated. For brevity, throughout the thesis we will assume the ORAM state

updates are implicit, including the encryption key generated and maintained by the

client.

Some existing efficient ORAM protocols are Square Root ORAM [Gol87], Hi-

erarchical ORAM [GO96], Binary-Tree ORAM [SCSL11], Interleave Buffer Shuffle

Square Root ORAM [Xie+16], TP-ORAM [SSS12], PathORAM [Ste+13] and TaO-

RAM [Sah+16]. For detailed descriptions of each protocol, we recommend the work

of Chang, Xie, and Li [CXL16]. The latter three ORAMs achieve the lowest commu-

nication and storage overheads, O(log n) and O(n), respectively.

2.2.1 PathORAM

PathORAM [Ste+13] is one of the most commonly used ORAM protocols due to its

efficiency and simplicity. In this section we briefly describe this construction as it is

used as an ORAM instantiation in the rest of the thesis.

In the PathORAM, both the client C and the server S are stateful. The server

stores the encrypted records (blocks) grouped in buckets, and the buckets form a

binary tree. The client’s storage, although asymptotically linear in the data size, is

relatively small in practice. The client stores the position map that maps the record

ID to a leaf in the server tree storage and a small amount of stash, which can store

some plaintext blocks on the client side.

The main invariant of the protocol is that at all times the ciphertext of the record

a is stored somewhere on the path from the root to the leaf that is mapped to a, or

in the stash (hence the name of the construction).

The ORAM is initialized with a binary tree of buckets with all buckets containing

valid encryptions of dummy records. The position map is sampled at random (filled

with permuted distinct numbers).

12

Main routine of the ORAM is an access sub-protocol, which is similar for read

r and write w types of access (remember, ORAM hides the type of access from the

curious server). In PathORAM, the access (o, a, d) consists of four steps. First, remap

the current leaf x for a to a new random leaf x′. Second, read the entire path to leaf

x (all buckets from root to leaf) into the client stash. Third, the client updates the

block value to d if the access is a write w. Finally, write back the path to leaf x filling

the buckets with all blocks from stash in a way that maintains the invariant.

The newly updated block a with the new value d may be included in the new

path, or it may stay in the stash. It is important that the stash size be provably

bounded. [Ste+13, Theorem 1] does exactly that — at least for the bucket size of 5,

the probability of stash overflow and its size are related as in Equation (2.1).

Pr [stash size > x] ≤ 14 · (0.6002)x (2.1)

If the probability of a protocol failure is thought of as the adversary’s advantage (the

probability of breaking the security), then the stash size equivalent to 128-bit security

is about 100 blocks for the bucket of size 5 [Ste+13, Figure 5].

2.3 Differential Privacy

Differential Privacy (DP) is a guarantee on a mechanism that takes a dataset and

returns some result. The guarantee states that for two neighboring databases (that

differ in exactly one record), the probability that the adversary will understand by

looking at the output, which of the two databases was used as an input, is bounded.

More formally, Differential Privacy is defined in Definition 2.3.1.

Definition 2.3.1 (Differential Privacy, adapted from [Dwo+06; DMNS06]). A ran-
domized algorithm A is (ϵ, δ)-differentially private if for all D1 ∼ D2 ∈ X n, and for

13

all subsets O of the output space of A,

Pr [A (D1) ∈ O] ≤ exp(ϵ) · Pr [A (D2) ∈ O] + δ .

One way to interpret this definition is the following. Probabilities are taken over

the coins of algorithm A, which answers a query based on a dataset. A natural

instantiation of A is a view of a distinguishing adversary A, who tries to guess which

of the two datasets was used. The expression in Definition 2.3.1 then bounds the

advantage of A with ϵ and δ parameters. Note that exp(x) ≈ 1 + x + x2

2!
, and for

sufficiently small x the last term is negligible. If we put ϵ + 1 in place of exp(ϵ),

it becomes clear that ϵ is the exact value by which two probabilities are allowed to

differ. For ϵ = 0, they have to be equal, for ϵ = 0.01, probabilities may differ by

1%. Therefore, ϵ is called a privacy budget of a DP system. δ term is additive and

therefore must be small by itself. This term is essentially a probability that the entire

system fails. For example, if A is randomized and fails with a certain chance, this

probability will be δ. For instance, a PathORAM [Ste+13] algorithm can have a stash

overflow with a bounded probability [Ste+13, Theorem 1] and it will cause the entire

system to fail. If PathORAM is used in a DP system then this probability, however

small, bounded and negligible, will have to be accounted for in δ.

Note that Definition 2.3.1 describes a property of A and not a construction

method. To construct A, the seminal work of Dwork et al. [DMNS06] offers an

algorithm called Laplacian Perturbation Algorithm (LPA). The idea is to tune the

noise sampled from the Laplacian distribution to the sensitivity of a query, defined

as the change of output with respect to change in input. For example, if a change

in one record of the dataset causes a change in the output value of at most one

(e.g., a count query), then the sensitivity is 1. [DMNS06] proves that if one adds

Laplace
(
0, sensitivity

ϵ

)
to the real result of a query, the resulting mechanism is ϵ-DP.

14

2.3.1 DP sanitizers

While the Laplacian Perturbation Algorithm is an effective and simple way of answer-

ing a single count query, we will need to answer a sequence of count queries, ideally,

without imposing a bound on the length of this sequence. We will hence make use of

sanitization algorithms.

Definition 2.3.2. Let Q be a collection of queries. An (ϵ, δ, α, β)-differentially private
sanitizer for Q is a pair of algorithms (A,B) such that:

• A is (ϵ, δ)-differentially private, and

• on input a dataset D = d1, . . . , dn ∈ X n, A outputs a data structure DS such
that with probability 1− β for all q ∈ Q, |B (DS, q)−∑i q(di)| ≤ α.

In Definition 2.3.2, the query is a predicate, which is defined as in Section 1.1.1,

and it returns a binary 0 or 1 when executed over a search key (an attribute) d ∈ X .

B (DS, q) then returns a count, a scalar value which bounds the number of search

keys that satisfy the query. For example, a query q can be a range query, then∑
i q(di) is the number of records in the range, and B (DS, q) returns a scalar value

of noise (the fake records), such that it is within α from the true count.

Remark 2.3.1. Given an (ϵ, δ, α, β)-DP sanitizer as in Definition 2.3.2 one can
replace the answer B (DS, q) with B′(DS, q) = B (DS, q)+α. Hence, with probability
1 − β, for all q ∈ Q, 0 ≤ B′ (DS, q) −∑i q(di) ≤ 2α. We will hence assume from
now on that sanitizers have this latter guarantee on their error.

The main idea of sanitization (a.k.a. private data release) is to release specific

noisy statistics on a private dataset once, which can then be combined in order to

answer an arbitrary number of queries without violating privacy. Depending on the

query type (see Section 1.1.3) and the notion of Differential Privacy (i.e., pure or

approximate), different upper bounds on the error have been proven. Omitting the

dependency on ϵ and δ, in case of point queries over domain size N , pure Differential

15

Privacy results in α = Θ(logN) [BBKN14], while for approximate Differential Privacy

α = O(1) [BNS13]. Note that the sanitizers add noise to a count of records, and for

the point queries the count is the number of records with a given categorical value

(i.e., number of female students in a class). For range queries over domain size N ,

these bounds are α = Θ(logN) for pure Differential Privacy [BLR13; DNPR10], and

α = O((log∗N)1.5) for approximate Differential Privacy (with an almost matching

lower bound of α = Ω(log∗N)) [BNS13; BNSV15; Kap+20]. More generally, Blum,

Ligett, and Roth [BLR13] showed that any finite query set Q can be sanitized, albeit

non-efficiently.

Answering point and range queries with differential privacy

Utilizing the LPA for answering point queries results in error α = O(logN). A

practical solution for answering range queries with error bounds very close to the

optimal ones is the hierarchical method [DNPR10; HRMS10; XWG10]. The main idea

is to build an aggregate tree on the domain, and add noise to each node proportional

to the tree height (i.e., noise scale logarithmic in the domain size N). Then, every

range query is answered using the minimum number of tree nodes. Qardaji, Yang,

and Li [QYL13] showed that the hierarchical algorithm of Hay et al. [HRMS10], when

combined with their proposed optimizations, offers the lowest error.

Composition

Finally, in this thesis we will make use of a composition theorem (adapted from

[McS09]) based on [DMNS06; Dwo+06]. It concerns executions of multiple DP mech-

anisms on non-disjoint and disjoint inputs.

Theorem 2.3.1. Let A1, . . . ,Ar be mechanisms, such that each Ai provides ϵi-DP.
Let D1, . . . ,Dr be pairwise non-disjoint (resp., disjoint) datasets. Let A be another
mechanism that executes A1(D1), . . . ,Ar(Dr) using independent randomness for each

16

Ai, and returns their outputs. Then, mechanism A is (
∑r

i=1 ϵi)-DP (resp., (maxri=1 ϵi)-
DP).

2.4 Trusted Execution Environments

Trusted Execution Environments is a generalized term for a “protected” part of a

processing engine. Security in this setting means a combination of confidentiality, in-

tegrity, secrecy, isolation and protection against side-channel attacks. TEE cannot be

entered through system calls, jumps or register manipulations. Environment’s mem-

ory content and integrity are protected, and neither OS, nor a hypervisor can access

it. Main purpose of the TEE is to vastly reduce the attack surface, see Figure 2·1.

App AppApp App App AppApp App

Attack Surface

OS OS

Hypervisor

Hardware Hardware

Attack Surface Without Enclaves Attack Surface With Enclaves

Hypervisor

Figure 2·1: Attack surface with TEE. Adapted from sgx101.gitbook.io.

While TEE is a concept defining an execution environment, specific solutions

include a hardware security module (a plug-in device with a protected memory and

a crypto-optimized processing unit), an FPGA, and a set of extensions to an existing

processor architecture, such as an SGX for Intel x86, Secure Encrypted Virtualization

sgx101.gitbook.io

17

[Dav16] for AMD and Apple’s Secure Enclave1. Of all these, Intel SGX is the most

widely used technology.

2.4.1 Software Guard Extensions

Software Guard Extensions (SGX) is a set of instructions for the Intel x86 architecture

that allow a user or an Operating System to define a region of protected memory,

called the enclave, and interact with it. The enclave can only be accessed using the

SGX instructions (i.e, regular mov instruction would not work), and all pages of the

enclave are symmetrically encrypted and physically protected. SGX guarantees the

integrity and security of the memory pages within the enclave. Although the size of

enclave memory is very limited, SGX can use regular RAM by transparently swapping

the pages between the trusted and untrusted memory. The pages are then encrypted

with integrity protection when placed in the RAM (sealing in SGX terms).

An SGX-enabled application declares its trusted and untrusted components up-

front. Trusted part will live entirely in the enclave, while the untrusted part is a

normal process that runs within the OS. The application has to be digitally signed

for the enclave to accept it, and the enclave itself can authenticate to the user via

an attestation process. Conceptually, the simplest SGX application in an outsourced

database system can be seen as a trusted component that operates over sensitive ma-

terial (e.g., keys, tokens, plaintext user data), a remote trusted client application that

communicates with the enclave, and a layer of code that passes requests through (un-

trusted part of an SGX application). Cipherbase [Ara+13] and StealthDB [VGG19]

are good examples of such approach.
1https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web

https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web

18

2.4.2 Issues with SGX

SGX, as the closest instantiation of TEE available, has been extensively targeted.

The attacks include Foreshadow [Van+18], Prime+Probe cache attack [Sch+17], an

attack from within the enclave [SWG19], Spectre line of attacks that can bypass SGX

[Koc+19], replay attack [Ska+19], Plundervolt attack [Mur+20], Load Value Injection

attack [Van+20] and SGAxe attack [SKG20]. Due to its many security issues, SGX

has been officially discontinued.2

Besides the attacks against the SGX, the design itself has a number of restrictions.

First of all, the enclave memory is capped at 128MB, part of which is occupied

by the SGX control structures, leaving the application about 96MB. SGX allows

the use of external memory pages through the sealing mechanism, but it imposes

high overhead of re-encryption and crossing the enclave physical boundary. Second,

the code execution inside the enclave is significantly slower. Third, by design, only

the untrusted application component can interact with the OS, for example, make

network or storage I/O requests. Finally, from the security standpoint the enclave is

vulnerable against the side-channel attacks, most of all, access pattern leakage. Such

leakage implies that the normal database application cannot be placed directly in the

enclave and be deemed secure, because access pattern has been effectively exploited

up to a reconstruction attack [KKNO16]. One then has to design the application

specifically to conceal the access pattern. For example, ZeroTrace [SGF18] is a variant

of PathORAM [Ste+13] that is internally oblivious and thus can work in SGX. Oblix

[Mis+18] is another example of a structure that is, in Mishra et al. [Mis+18] own

terms, doubly-oblivious — internally in how it manages memory and registers, and

externally in how it interacts with a storage.

2As of 11th Generation Intel Core processor.

19

Chapter 3

Related work

In this section we will go over the relevant work in the area. The discussion is grouped

by the query and adversary type, consistent with the overall thesis structure. Some

of the following sections were paraphrased or taken verbatim from my published work

[BKR19; Bog+21].

3.1 Range query security in a snapshot model

In Chapter 4 we explore the methods of answering range queries in a snapshot ad-

versary setting. We group these methods into those relying on OPE / ORE schemes

coupled with regular database range indices, such as B+ tree, and other mostly in-

teractive constructions that use custom data structures to support secure indexing.

The list of recently proposed Order-Preserving Encryption (OPE) schemes in-

cludes [AKSX04; OSC04; BCLO09; BCO11; TYM14; KS14; Woz+13; KAK10; Ker15;

KAK13; XYH12; XY12; LW12; EWSG04; LW13; Zha+22; SYSC21; YK21]. Popa,

Li, and Zeldovich [PLZ13] present a nice analysis of these schemes and they are

the first to show that using a stateful scheme one can achieve the ideal security

guarantees for OPE. In addition, there are a number of Order-Revealing Encryp-

tion (ORE) schemes [Bon+15; CLWW16; LW16; Cas+18; Cas+18; BZ16; Haa+17;

ELL18; LWZ19; Lv+21] and related protocols [ZRL21] that have been proposed. Af-

ter the introduction of OPE / ORE as the means of protecting range indices, a line

of attacks [CGPR15; DDC16; NKW15; LWHZ21] have emerged.

20

The second group of approaches assumes an outsourced setting where the client

may have to communicate with the server during query processing [RACY16; KT19;

BPP17; Dem+16]. We would like to point out that there are some other methods

that can be used to run range queries on encrypted data that use different types

of schemes and techniques. CryptDB [PRZB11] is a seminal work in this direction

offering computations over encrypted data. Arx [PBP19] provides strictly stronger

security guarantees by using only semantically secure primitives. Seabed [Pap+16]

uses an additively symmetric homomorphic encryption scheme for aggregates and cer-

tain filter queries. Samanthula, Jiang, and Bertino [SJB14] offer a method to verify

and apply a predicate (a junction of conditions) using garbled circuits or homomor-

phic encryption without revealing the predicate itself. SisoSPIR [IKLO16] presents

a mechanism to build an oblivious index tree such that neither party learns the pass

taken. See [BPP17] and [LCZ17] for an overview of other methods. We also note a

work on theoretical analysis of ORE security [JPS21].

3.2 Range query security in a persistent model

For the persistent adversary setting, we group the related secure databases, engines,

and indices into two categories (i) systems that are oblivious or volume-hiding and

do not require Trusted Execution Environment (TEE), and (ii) constructions that

rely on TEE (usually, Intel SGX). In this section, where relevant, we aim to compare

the related work to our own point and range query solution, Epsolute [Bog+21],

see Chapter 5. We claim that Epsolute is the most secure and practical range- and

point-query engine in the outsourced database model, that protects both Access Pattern

(AP) and Communication Volume (CV) using Differential Privacy, while not relying

on TEE, linear scan or padding result size to the maximum.

21

3.2.1 Obliviousness and volume-hiding without enclave

This category is the most relevant to Epsolute, wherein the systems provide either

or both AP and CV protection without relying on TEE. Cryptϵ [Roy+20] is a recent

end-to-end system executing “DP programs”. Cryptϵ has a different model than Ep-

solute in that it assumes two non-colluding servers, an adversarial querying user (the

analyst), and it uses DP to protect the privacy of an individual in the database, which

includes volume-hiding for aggregate queries. Cryptϵ also does not consider oblivious

execution and attacks against the AP. Shrinkwrap [Bat+18] (and its predecessor

SMCQL [Bat+17]) is an excellent system designed for complex queries over federated

and distributed data sources. In Shrinkwrap, AP protection is achieved by using

oblivious operators (linear scan and sort) and CV is concealed by adding fake records

to intermediate results with DP. Padding the result to the maximum size first and

doing a linear scan over it afterwards to “shrink” it using DP, is much more expensive

than in Epsolute, however. In addition, in processing a query, the worker nodes are

performing an O(n log n) cost oblivious sorting, where n is the maximum result size

(whole table for range query), since they are designed to answer more general complex

queries. SEAL [DPPS20] offers adjustable AP and CV leakages, up to specific bits

of leakage. SEAL builds on top of Logarithmic-SRC [Dem+16], splits storage into

multiple ORAMs to adjust AP, and pads results size to a power of 2 to adjust CV.

Epsolute, on the other hand, fully hides the AP and uses DP with its guarantees

to pad the result size. PINED-RQ [Sah+18] samples Laplacian noise right in the

B+ tree index tree, adding fake and removing real pointers according to the sample.

Unlike Epsolute, PINED-RQ allows false negatives (i.e., result records not included

in the answer), and does not protect against AP leakage. On the theoretical side,

Chan et al. [CCMS19] (followed by Beimel, Nissim, and Zaheri [BNZ19]) treat the AP

itself as something to protect with DP. [CCMS19] introduces a notion of differential

22

obliviousness that is admittedly weaker than the full obliviousness used in Epsolute.

Most importantly, [CCMS19] ensures differential privacy with respect to the ORAM

only, while Epsolute ensures DP with respect to the entire view of the adversary.

3.2.2 Enclave-based solutions

Works in this category use trusted execution environment (usually, SGX enclave).

These works are primarily concerned with the AP protection for both trusted and

untrusted memory, unlike Epsolute which also protects CV. Cipherbase [Ara+13]

was a pioneer introducing the idea of using TEE (FPGA at that time) to assist

with RDBMS security. HardIDX [Fuh+17] simply puts the B+ tree in the enclave,

while StealthDB [VGG19] symmetrically encrypts all records and brings them in the

enclave one at a time for processing. EnclaveDB [PVC18] assumes somewhat unreal-

istic 192GB enclave and puts the entire database in it. ObliDB [EZ19] and Opaque

[Zhe+17] assume fully oblivious enclave memory (not available as of today) and de-

vise algorithms that use this fully trusted portion to obliviously execute common

RDBMS operators, like filters and joins. Oblix [Mis+18] provides a multimap that

is oblivious both in and out of the enclave. HybrIDX claims protection against both

AP and CV leakages, but unlike Epsolute it only obfuscates them. Epsolute offers

an indistinguishability guarantee for AP and a DP guarantee for CV, while HybrIDX

hides the exact result size and only obfuscates the AP. Lastly, Hermetic [XPHF19]

takes on the SGX side-channel attacks, including AP. It provides oblivious primitives,

however, it only offers protection against software and not physical attacks (e.g., it

trusts a hypervisor to disable interrupts).

3.3 kNN query security in a snapshot model

In this section, where relevant, we aim to compare the related work to our own kNN

query solution, k-anon [BKOZ22], see Chapter 6.

23

A work immediately related to ours is QuickN by Wang, Hou, and Li [WHL20].

QuickN offers an adaptation of nearest-neighbor search algorithm in conventional

tree data structures (i.e., R-trees) to well-established Order-Preserving Encryption

(OPE) schemes. Unlike our solution that involves a novel property-preserving en-

cryption scheme specifically designed for high-dimensional vectors, QuickN encrypts

each vector dimension separately with OPE. [WHL20] includes the experiments with

attacks against their solution (attack by Grubbs et al. [Gru+17]) and report a high

degree of protection against them (at most 3.7% matching rate for the inference

attacks against coordinates represented as pairs of longitude and latitude).

QuickN approach of applying OPE to an R-tree, however, has some disadvantages.

First, an ideal stateless OPE has been shown inferior ([BCO11]) to its counterpart,

an Order-Revealing Encryption (ORE) in which the comparison over ciphertexts is

defined explicitly.1 An ORE, in turn, can have a varying level of security, with the

higher security level translating into lower comparison performance [BKR19]. In

QuickN, an R-tree-based nearest-neighbor algorithm involves a very high number of

comparisons, linear in data dimensionality. With the cost of comparison no longer

negligible, the overhead of a query over 2D or 3D is already high, saying nothing

of 768-dimensional vectors that our work targets. Second, QuickN protocol is not

single-round (i.e., it takes two roundtrips per query) and it returns a large number of

false positives even for a minimal k (4 000 false positives for 106 dataset and k = 1).

Wong et al. [WCKM09] propose a novel scheme, ASPE, that preserves a special

type of scalar product. Namely, Asymmetric Scalar-Product-Preserving Encryption

(ASPE) scheme preserves the scalar product of a database point and a query point,

but not the product of a database point with itself or another database point. ASPE

is then naturally integrated in existing kNN algorithms that use such asymmetric
1[WHL20] uses mOPE [PLZ13] which is an interactive protocol and not a traditional lightweight

stateless OPE like [BCLO09]. Since mOPE is an ideal (though stateful) OPE, Wang, Hou, and Li
[WHL20] do not include OPE leakage in their security definition.

24

scalar product in their indices. The work of Wong et al. [WCKM09] is similar to

k-anon in that we also apply a property-preserving encryption scheme to existing

kNN algorithms. ASPE is different in that it preserves a scalar product while we

preserve an L2 distance comparison, and ASPE has been broken in [YLX13] (although

the attack is a chosen plaintext attack, i.e., one cannot decrypt a random ciphertext).

Other works either target different aspects of query security, like integrity and

soundness of results [Yu+21; Cui+20], or involve mechanisms other than property-

preserving encryption [LLLT19; YPBV16; ZXT13; LSP15; ESJ14; YPBV14; KSS13;

HXRC11; PBP10; Ghi+08; QA08; MCA07].

25

Chapter 4

Range queries in the snapshot model

Order-Preserving Encryption (OPE) and Order-Revealing Encryption (ORE) are two

important encryption schemes that have been proposed in the area of query evalua-

tion over encrypted data. These schemes can provide very efficient query execution

but at the same time may leak some information to adversaries. In this chapter, we

present the first comprehensive comparison among a number of important OPE and

ORE schemes using a framework that we developed. We evaluate protocols that are

based on these schemes as well. We analyze and compare them both theoretically

and experimentally and measure their performance over database indexing and query

evaluation techniques using not only execution time but also I/O performance and

usage of cryptographic primitive operations. Our comparison reveals some interest-

ing insights concerning the relative security and performance of these approaches in

database settings. Furthermore, we propose a number of improvements for some of

these scheme and protocols. Finally, we provide a number of suggestions and recom-

mendations that can be valuable to database researchers and users.

Some of the following sections were paraphrased or taken verbatim from the fol-

lowing published work.

[BKR19] Dmytro Bogatov, George Kollios, and Leonid Reyzin. “A comparative

evaluation of order-revealing encryption schemes and secure range-query protocols”.

In: Proceedings of the VLDB Endowment 12.8 (2019), pp. 933–947. doi: 10.14778/

3324301.3324309

https://doi.org/10.14778/3324301.3324309
https://doi.org/10.14778/3324301.3324309

26

4.1 Introduction

Order-Preserving Encryption (OPE) was proposed by Agrawal et al. [AKSX04] in

their seminal paper. The main idea is to “encrypt” numerical values into ciphertexts

that have the same order as the original plaintexts. This is a very useful primitive

since it allows a database system to make comparisons between chiphertexts and

get the same results as if it had operated on plaintexts. A scheme was proposed in

[AKSX04] but no security analysis was given.

Boldyreva et al. [BCLO09] were the first to treat OPE schemes from a crypto-

graphic point of view, providing security models and rigorous analysis. The ideal

functionality of such a scheme is to leak only the order of the plaintexts and nothing

more. However, it was shown by Boldyreva et al. [BCLO09] that the ideal functional-

ity is not achievable if the scheme is stateless and immutable. In order to achieve the

ideal functionality, Popa, Li, and Zeldovich [PLZ13] proposed a mutable scheme that

constructs a binary tree on plaintexts and uses paths as ciphertexts. This tree is the

encrypted full state of the dataset, and once an insertion or a deletion rebalances the

tree, multiple ciphertexts get mutated. Kerschbaum [Ker15] proposed an improve-

ment on this scheme that also hides the frequency of each plaintext (how many times

a given value appears).

Furthermore, in order to improve the security of these schemes, Boneh et al.

[Bon+15] proposed to generalize OPE to Order-Revealing Encryption (ORE). In

ORE, ciphertexts have no particular order and look more like typical semantically

secure encryptions. The database system has a special comparison function that

can be used to compare two ciphertexts. These schemes are more secure than OPE

schemes, although they still leak some information, and in general are more expensive

to compute. Since these schemes leak some information, a number of recent works

considered attacks on systems that may use these schemes [IKK12; IKK14; NKW15;

27

GRS17; KKNO16; CGPR15; DDC16; LMP18; Bin+18; WZ18]. Most of these at-

tacks assume the attacker possesses auxiliary information and no other protections

are available.

OPE / ORE schemes can be used with almost no changes to the underlying

database engine. To provide greater security, a number of more complex protocols

for protecting data in outsourced databases have been proposed. These constructions

are often interactive, rely on custom data structures and are optimized for certain

tasks, such as range queries. Naturally, the more secure the protocol is, the larger

performance overhead it incurs. The most secure of these — Oblivious Random Access

Machine (ORAM) based protocol — provides strong, well-understood, cryptographic

privacy guarantees with no information leakage.

Applications that can benefit from such schemes and protocols include cloud ac-

cess security brokers and financial and banking applications. Indeed, a number of

commercial brokers including Skyhigh Networks1 and CipherCloud2 have been using

some form of OPE or ORE schemes in their systems. In addition, financial institu-

tions may be able to encrypt their data using the aforementioned schemes in order to

provide another layer of security, assuming that the performance overhead is accept-

able. For many of these applications the auxiliary information that is needed for the

attacks mentioned above is either unavailable or difficult to get.

Currently, it is a very challenging task for users to choose an appropriate data

privacy approach for their application, because the security and performance tradeoff

is not well understood. Both security and performance of every approach need to

be thoroughly evaluated. Characterizing security benefits of different approaches

remains an open problem, unlikely to be solved in the immediate future. However,

it is possible to evaluate the performance of each approach, so as to enable better-
1https://www.skyhighnetworks.com/
2https://www.ciphercloud.com/

https://www.skyhighnetworks.com/
https://www.ciphercloud.com/

28

informed decisions about whether the improved performance of some schemes is worth

the uncertainty about the security they achieve.

We emphasize that it is not trivial to evaluate the performance of these schemes.

Many of the papers presenting the above approaches provide only a theoretical treat-

ment and concentrate more on the security definitions and analysis and less on the

performance. Some of these constructions have not been even implemented prop-

erly. Furthermore, even though the main target of these schemes and protocols are

database applications, most of them have not been evaluated in database settings.

To address this problem, in this paper we design a new framework that allows

for systematic and extensive comparison of OPE and ORE schemes and secure range

query protocols in the context of database applications. We employ these schemes

in database indexing techniques (i.e. B+ trees) and query protocols and we report

various costs including I/O complexity.

The main contribution of this work is to present an experimental evaluation using

both real and synthetic datasets using our new framework that tracks not only time

but also primitive usage, I/O complexity, and communication cost. In the process,

we present improvements for some of the schemes that make them more efficient

and/or more secure. To make understanding of these schemes easier for the reader,

we present the main ideas behind these constructions, discuss their security definitions

and leakage profiles, and provide an analysis of implementation challenges for each

one.

4.2 Security Perspective

Each scheme and protocol we analyze has its own security definition, which captures

different leakage levels. We attempt to unify these definitions and analyze them under

29

a common framework. We also attempt to assess relative security of these definitions

and analyze their leakages.

In this work we mostly consider the snapshot model, where the attacker can

observe all the database contents at one time instant. Note that this excludes timing

attacks such as measuring encryption time. All security definitions of the schemes and

protocols that we discuss here are based on this model. Also, the snapshot attacker is

the most common attacker that we face today [BPP17]. The idea is that a hacker or

an insider can steal the entire encrypted database and all its contents at some point

in time.

Beyond the snapshot model, it is also possible to consider a stronger adversary who

can track communication volume and data access patterns in real time. Approaches

that help protect against such an attacker include ORAM for protection against access

pattern leakage and differential privacy for protection against communication volume

leakage. Although this model is not a primary target of this paper, our benchmark

includes a protocol (Section 4.4.5) that is secure in this setting to show the cost of

adding such protection.

We wanted to specifically comment on a work of Grubbs et al. [Gru+17], which

demonstrates a series of attacks against OPE and ORE schemes. The attacks can be

very successful, but they depend on certain prerequisites. First, all attacks assume

the existence of a well-correlated auxiliary dataset. Second, the binomial attack,

which works against a “perfectly secure frequency-hiding scheme”, reliably recovers

only high-frequency elements. Finally, the attacks are specifically devastating against

encrypted strings (e.g. first and last names) as opposed to numerical data, and we

also do not recommend using OPE / ORE for strings (see Section 4.2.1). One of the

conclusions of our work is that security is negatively correlated with performance and

it is up to a practitioner to trade off security and performance constraints.

30

4.2.1 A note on variable-length inputs

A generic OPE / ORE scheme accepts bit-strings of any length as inputs, and treats

them as numbers or processes them bit-by-bit. We warn against supplying raw bytes

of variable length (e.g. encoded strings) to OPE and ORE schemes, as such an ap-

proach will introduce both performance and security challenges.

From the performance standpoint, the complexity of OPE / ORE schemes usu-

ally depends on the input length at least linearly (see Table 4.1). 32-bit numbers

already introduce a noticeable overhead for some (usually more secure) schemes, and

supplying arbitrary-length inputs may worsen performance by at least an order of

magnitude.

Security of such a construction will be minimal as most schemes leak some in-

formation about the magnitude of the difference, and longer inputs will naturally be

treated as larger numbers. Thus, the difference between long and short inputs will be

apparent. We refer to the work of Grubbs et al. [Gru+17] as they have a practically

supported discussion of security consequences of using OPE / ORE with arbitrary

strings.

On the other hand, other protocols in our benchmark can usually handle variable-

length inputs as long as they fit into a single block for the underlying block cipher.

4.3 OPE and ORE Schemes

An Order-Revealing Encryption scheme is a triple of polynomial-time algorithms

KGen, Enc and Cmp. KGen generates a key of parameterized length (the λ pa-

rameter). Enc takes a numerical input (as a bit string) and produces a ciphertext.

Cmp takes two ciphertexts generated by the scheme and outputs whether the first

plaintext was strictly less than the second. Note that being able to check this condi-

tion is enough to apply all other comparison operators (<, ≤, =, ≥, >). Also note

31

that an ORE scheme does not include a decryption algorithm, because one can simply

append a symmetric encryption of the plaintext to the produced ciphertext and use it

for decryption.3 An Order-Preserving Encryption (OPE) scheme is a particular case

of an ORE scheme where ciphertexts are numerical and thus Cmp routine is trivial

(the numerical order of ciphertexts is the same as underlying plaintexts). OPE may

optionally include a decryption algorithm, since appending a symmetric ciphertext is

no longer possible.

Both OPE and ORE schemes by definition allow to totally order the ciphertexts.

This is their inherent leakage (by design) and all the OPE / ORE security definitions

account for this and possibly additional leakage.

We proceed by describing and analyzing the OPE / ORE schemes we have bench-

marked. All plaintexts are assumed to be 32-bit signed integers, or n-bit inputs in

complexity analysis. OPE ciphertexts are assumed to be 64-bit signed integers.

From here, we will use the term ORE to refer to both OPE and ORE, unless

explicitly stated otherwise. Each scheme has its own subsection where the first part

is the construction overview followed by security discussion, and the second part is

our theoretical and experimental analysis.

4.3.1 BCLO OPE [BCLO09]

The OPE scheme by Boldyreva et al. [BCLO09] was the first OPE scheme that

provided formal security guarantees and was used in one of the first database systems

that executes queries over encrypted data (CryptDB [PRZB11]). The core principle

of their construction is the natural connection between a random order-preserving

function and the hypergeometric probability distribution.
3Given the secret key, it is possible to decrypt a ciphertext by doing binary search on the plaintext

domain: encrypting known values and comparing them against the target ciphertext, until the target
plaintext is found. However, this would require O(log |D|) encryption and comparison operations.

32

The encryption algorithm works by splitting the domain into two parts according

to a value sampled from the Hypergeometric Probability Distribution (HG), and

splitting the range in half recursively. When the domain size contains a single element,

the corresponding ciphertext is sampled uniformly from the current range.

All pseudo-random decisions are made by an internal PRG (refereed to as Tape-

Gen in [BCLO09]). This way not only the algorithm is deterministic, but also de-

cryption is possible. The decryption procedure takes the same “path” of splitting

domain and range, and when the domain size reaches one, the only value left is the

original plaintext.

Security

This scheme is POPF-CCA secure [BCLO09], meaning that it is as secure as the

underlying ideal object — randomly sampled order-preserving function from a certain

domain to a certain range. For practical values of the parameters, Boldyreva, Ch-

enette, and O’Neill [BCO11] showed that the distance between the plaintexts can be

approximated to an accuracy of about the square root of the domain size. In other

words, approximately, half of the bits (the most significant) are leaked. Grubbs et al.

[Gru+17] showed that this leakage allows to almost entirely decrypt the ciphertexts

(given auxiliary data with a similar distribution) and encrypting strings (rather than

numbers) with this scheme is especially dangerous (see Section 4.2.1).

Analysis and implementation challenges

Efficient sampling from the hypergeometric distribution is a challenge by itself. Au-

thors suggest using a randomized yet exact (not approximate) Fortran algorithm by

Kachitvichyanukul and Schmeiser [KS88]. It should be noted that the algorithm relies

on infinite precision floating-point numbers, which most regular frameworks do not

have. The security consequences of finite precision computations is actually an open

33

question. The complexity of this randomized algorithm is hard to analyze; however,

we empirically verified that its running time is no worse than linear in the input bit

length. The authors also suggest a different algorithm for smaller inputs [Wal77].

On average, encryption and decryption algorithms make n calls to HG, which in

turn consumes entropy generated by the internal PRG. The entropy, and thus the

number of calls to PRG, needed for one HG run is hard to analyze theoretically.

However, we derived this number experimentally (see Section 4.5).

BCLO has been implemented in numerous languages and has been deployed in a

number of secure systems. We add C# implementation to the list, and recommend

using a library that supports infinite precision floating-point numbers when building

the hypergeometric sampler.

4.3.2 CLWW ORE [CLWW16]

The ORE scheme by Chenette et al. [CLWW16], which authors call “Practical ORE”,

is the first efficient ORE implementation based on PRFs.

On encryption, the plaintext is split into n values in the following way. For each

bit, a value is this bit concatenated with all more significant bits. This value is given

to a keyed PRF and the result is numerically added to the next less significant bit.

This resulting list of n elements is the ciphertext.

The comparison routine traverses two lists in-order looking for the case when one

value is greater than the other by exactly one, revealing location and value of the first

differing bit. If no such index exists, the plaintexts are equal.

Security

A generic ORE security definition was introduced along with the scheme [CLWW16].

ORE leakage is more clearly quantified than in OPE. The definition says that the

scheme is secure with a leakage L(·) if there exists an algorithm (simulator) that has

34

access to the leakage function and can generate output indistinguishable from the

one generated by the real scheme. This scheme satisfies ORE security definition with

the leakage L(·) of the location and value of the first differing bit of every pair of

plaintexts. Note that the most significant differing bit also leaks the approximate

distance between two values.

Analysis and implementation challenges

On encryption the algorithm makes n calls to PRF and the comparison procedure

does not use any cryptographic primitives. Ciphertext is a list of length n, where each

element is an output of a PRF modulo 3. The authors claim that the ciphertext’s size

is n log2 3, just 1.6 times larger than the plaintext’s size. While this may be true for

large enough n if ternary encoding is used, we found that in practice the ciphertext

size is still 2n. 1.6n for 32-bit words is 51.2 bits, which will have to occupy one 64-bit

word, or two 32-bit words, therefore resulting in 2n anyway.

4.3.3 Lewi-Wu ORE [LW16]

Lewi and Wu [LW16] presented an improved version of the CLWW scheme [CLWW16]

which leaks strictly less.

The novel idea was to use the “left / right framework” in which two ciphertexts

get generated — left and right. The right ciphertexts are semantically secure, so an

adversary will learn nothing from them. Comparison is only defined between the left

ciphertext of one plaintext and the right ciphertext of another plaintext.

The approach is to split the plaintext into blocks of d bits. The ciphertext is

computed block-wise. For the right side, the algorithm compares the given block

value to all 2d possible block values; each comparison result is added (modulo 3) to

a PRF of the previous blocks. All 2d comparison results go into the right ciphertext.

The left side, which is shorter, is produced in such a way as to reveal the correct

35

comparison result. This way the location of the differing bit inside the block is

hidden, but the location of the first differing block is revealed.

Security

This scheme satisfies the ORE security definition introduced by Chenette et al.

[CLWW16] with the leakage L(·) of the location of the first differing block. This prop-

erty allows a practitioner to set performance-security tradeoff by tuning the block size.

Left / right framework is particularly useful in a B+ tree since it is possible to store

only one (semantically secure) side of a ciphertext in the structure (see Section 4.4.1).

Analysis and implementation challenges

Let n be the size of input in bits (for example, 32) and d be the number of bits per

block (for example, 2).

Left encryption loops n
d

times making one PRP call and two PRF calls each

iteration. Right encryption loops n
d
2d times making one PRP call, one hash call and

two PRF calls each iteration. Comparison makes n
d

calls to hash at worst and half

of that number on average. Please note that the complexity of right encryption is

exponential in the block size. In the Table 4.1 the PRP usage is linear due to our

improvement. The ciphertext size is no longer negligible — n
d

(
λ+ n+ 2d+1

)
+ λ, for

λ being PRF output size.

The implementation details of this approach raise an interesting security question.

Although the authors suggest using 3-rounds Feistel networks [SK96] for PRP and

use it in their implementation, it may not be secure for small input sizes. Feistel

networks security depends on the input size [HR10] — exponential in the input size.

However, the typical input for PRP in their scheme is 2–8 bits, thus even exponential

number is small.

36

We have considered multiple PRP implementations to use instead of the Feistel

networks. Because the domain size is small (from 22 to 28 elements), we have decided

to build a PRP by simply using the key as an index into the space of all possible

permutations on the domain, where a permutation is obtained from the key via Knuth

shuffle (this approach was mentioned in [MRS09]). Another important aspect of the

implementation is that for each block we need to compute the permutation of all the

values inside the block. This operation applied many times can be expensive. To

address this, we propose to generate a PRP table once for the whole block and then

use this table when one needs to compute the location of an element of permutation.

This can reduce the PRP usage (indeed, we observe a reduction from 80 to 32 calls

in our case). We evaluate this improved approach in our experimental section.

4.3.4 CLOZ ORE [Cas+18]

Cash et al. [Cas+18] introduced a new ORE scheme that provably leaks less than

any previous scheme. The idea is to use Chenette et al. [CLWW16] construction

(see Section 4.3.2), but permute the list of PRF outputs. The original order of those

outputs is not necessary, as one can simply find a pair that differs by one. This is not

enough to reduce leakage, however, since an adversary can count how many elements

two ciphertexts have in common.

To address this problem, the authors define a new primitive they call a Property-

Preserving Hash (PPH). A PPH as defined and used in [Cas+18], allows one to expose

a property (specifically y
?
= x+1) of two (numerical) elements such that nothing else

is leaked. In particular, the outputs are randomized, so same element hashed twice

will have different hashes. Please refer to the original paper [Cas+18] for formal

correctness and security definitions.

Equipped with the PPH primitive, the algorithm “hashes” the elements of the

ciphertexts before outputting them. Due to security of PPH, the adversary would

37

not be able to count how many elements two ciphertexts have in common, thus, would

not be able to tell the location of differing bit.

Security

The strong side of the scheme is its security. The scheme leaks L(·) an equality pattern

of the most-significant differing bits (satisfying Chenette et al. [CLWW16] definition).

As defined in [Cas+18], the intuition behind equality pattern is that for any triple of

plaintexts m1, m2, m3, it leaks whether m2 differs from m1 before m3 does. We do not

know of any attacks against this construction (partially because no implementation

exists yet, see next subsection), but it is inherently vulnerable to frequency attacks

that apply to all frequency-revealing ORE schemes (see Section 4.2).

Analysis and implementation challenges

On encryption, the scheme makes n calls to PRF, n calls to PPH Hash and one call

to PRP. Comparison is more expensive, as the scheme makes n2 calls to PPH Test.

The scheme has two limitations that make it impractical. The first one is the

square number of calls to PPH, which is around 1024 for a single comparison.

The second problem is the PPH itself. Authors suggest a construction based on

bilinear maps. The hash of an argument is an element of a group, and the test algo-

rithm is computing a pairing. This operation is very expensive — order of magnitude

more expensive than any other primitive we have implemented for other schemes.

We have implemented this scheme in C++ using the PBC library [Lyn18] to

empirically assess schemes’s performance, and on our machine (see Section 4.5), a

single comparison takes 1.9 seconds on average. Although we have produced the first

(correct and secure) real implementation of this scheme in C++, it is infeasible to

use it in the benchmark (it will take years to complete a single run). Therefore, for

the purposes of our benchmark, we implemented a “fake” version of PPH — correct,

38

but insecure, which does not use pairings. Consequently, in our analysis we did not

benchmark the speed of the scheme, but measured all other data.

4.3.5 FH-OPE [Ker15]

Frequency-hiding OPE by Kerschbaum [Ker15] is a stateful scheme that hides the

frequency of the plaintexts, so the adversary is unable to construct a frequency his-

togram.

This scheme is stateful, which means that the client needs to keep a data structure

and update it with every encryption and decryption. The data structure is a binary

search tree where the node’s value is the plaintext and node’s position in a tree is

the ciphertext. For example, consider the range [1, 128]. Any plaintext that happens

to arrive first (for example, 6), will be the root, and thus the ciphertext is 64. Then

any plaintext smaller than the root, say 3, will become the left child of the root, and

will produce the ciphertext 32. To encrypt a value, the algorithm traverses the tree

until it finds a spot for the new plaintext, or finds the same plaintext. If the same

plaintext is found, the traversal pseudo-randomly passes to the left or right child, up

to the leaf. This way, the invariant of the tree — intervals of the same plaintexts do

not overlap — is maintained. The ciphertext generated from the new node’s position

is returned.

Due to randomized ciphertexts, the comparison algorithm is more complicated

than in the regular deterministic OPE. To properly compare ciphertexts, the algo-

rithm needs to know the boundaries — the minimum and maximum ciphertexts for a

particular plaintext. The client is responsible for traversing the tree to find the plain-

text for the ciphertext and then minimum and maximum ciphertext values. Having

these values, the comparison is trivial — equality is a check that the value is within

the boundaries, and other comparison operators are similar.

39

Authors have designed a number of heuristics to minimize the state size, however,

these are mostly about compacting the tree and the result depends highly on the tree

content. In our analysis, we consider the worst case performance without the use of

heuristics. In our experimental evaluation, however, we did implement compaction.

Security

The security of the scheme relies on the large range size to domain size ratio. Authors

recommend at least 6 times longer ciphertexts than the plaintexts in bit-length, which

means ciphertexts should be 192-bit numbers that are not commonly supported. It

is possible to operate over arbitrary-length numbers, but the performance overhead

would be substantial. We did a quick micro-benchmark in C# and the overhead of

using BigInteger is 15–20 times for basic arithmetic operations.

This scheme satisfies IND-FAOCPA definition (introduced along with the scheme

[Ker15]), meaning that it does not leak the equality or relative distance between

the plaintexts. This definition has been criticized in [MRS18], who claim that the

definition is imprecise and propose an enhanced definition along with a small change

to construction to satisfy this new definition. Both schemes leak the insertion order,

because it affects the tree structure. We do not know of any attacks against this

leakage, but it does not mean they cannot exist. Grubbs et al. [Gru+17] describe an

attack against this scheme (binomial attack), but it applies to any perfectly secure

(leaking only total order) frequency-hiding OPE.

Analysis and implementation challenges

If the binary tree grows in only one direction, at some point it will be impossible

to generate another ciphertext. In this case, the tree has to be rebalanced. This

procedure will invalidate all ciphertexts already generated. This property makes the

scheme difficult to use in some protocols since they usually rely on the ciphertexts on

40

the server being always valid. The authors explicitly mention that the scheme works

under the assumption of uniform input. However, the rebalancing will be caused by

insertion of just 65 consecutive input elements for 64-bit integer range.

The scheme makes one tree traversal on encryption and decryption. Comparison

is trickier as it requires one traversal to get the plaintext, and two traversals for

minimum and maximum ciphertexts. We understand that it is possible to get these

values in fewer than three traversals, but we did not optimize the scheme for the

analysis and evaluation.

For practitioners we note that the stateful nature of the scheme implies that the

client storage is no longer negligible as the state grows proportionally to the number

of encryptions. We also note that implementing compaction extensions will affect

code complexity and performance. Finally, we stress again that some non-uniform

inputs can break the scheme by causing all ciphertexts to be invalid. It is up to the

users of the scheme to ensure uniformity of the input, which poses serious restrictions

on the usage of the scheme.

4.4 Secure Range Query Protocols

We proceed by describing and analyzing the range query protocols we have cho-

sen. For the purpose of this paper, a secure range-query protocol is defined as a

client-server communication involving construction and search stages. Communica-

tion occurs between a client, who owns some sensitive data, and an honest server,

who securely stores it. In construction stage, a client sends the server the encryp-

ted datapoints (index-value tuples) and the server stores them in some internal data

structure. In search stage, a client asks the server for a range (usually specifying it

with encrypted endpoints) and the server returns a set of encrypted records matching

the query. Note that the server may interact with the client during both stages (e.g.

41

Ta
bl

e
4.

1:
[B

K
R

19
,T

ab
le

s
1

an
d

4]
.

P
ri

m
it

iv
e

us
ag

e
by

O
P

E
/

O
R

E
sc

he
m

es
.

O
rd

er
ed

by
se

cu
ri

ty
ra

nk
—

m
os

t
se

cu
re

be
lo

w
.
n

is
th

e
in

pu
t

le
ng

th
in

bi
ts

,d
is

a
bl

oc
k

si
ze

fo
r

Le
w

i-W
u

[L
W

16
]s

ch
em

e,
λ

is
a

P
R

F
ou

tp
ut

si
ze

,N
is

a
to

ta
l

da
ta

si
ze

,
H

G
is

a
hy

pe
r-

ge
om

et
ri

c
di

st
ri

bu
ti

on
sa

m
pl

er
,
P

P
H

is
a

pr
op

er
ty

-p
re

se
rv

in
g

ha
sh

w
it

h
h
-b

it
ou

tp
ut

s
bu

ilt
w

it
h

bi
lin

ea
r

m
ap

s
an

d
b
ol

d
ed

ar
e

w
ea

k
po

in
ts

of
th

e
sc

he
m

es
.

V
al

ue
s

in
pa

re
nt

he
se

s
ar

e
si

m
ul

at
io

n-
de

ri
ve

d.
N

=
10

3
,

n
=

32
,d

=
2,

λ
=

12
8

an
d
h
=

12
8

in
th

is
si

m
ul

at
io

n.

Sc
he

m
e

P
ri

m
it

iv
e

us
ag

e
(n

um
be

r
of

in
vo

ca
ti

on
s)

C
ip

he
rt

ex
t

si
ze

,
or

st
at

e
si

ze
(b

it
s)

Le
ak

ag
e

(o
n

to
p

of
to

ta
lo

rd
er

)
E

nc
ry

pt
io

n
C

om
pa

ri
so

n

[B
C

LO
09

]
≈

n
(4

1)
H

G
no

ne
2n

(6
4)

≈
to

p
h
al

f
of

th
e

b
it

s

[C
LW

W
16

]
n

(3
2)

P
R

F
no

ne
2n

(6
4)

M
os

t-
si

gn
ifi

ca
nt

d
iff

er
in

g
b
it

[L
W

16
]

2
n
/
d

(3
2)

P
R

P
n 2
d

(9
)

H
as

h
M

os
t-

si
gn

ifi
ca

nt
di

ffe
ri

ng
bl

oc
k

2
n d

(2d +
1) (1

60
)

P
R

F
n d

(λ+
n
+
2d

+
1
) +λ

n d
2d

(6
4)

H
as

h
(2

81
6)

[C
as

+
18

]

n
(3

2)
P

R
F

n
2

(1
04

6)
P

P
H

n
·h

(4
09

6)
E

qu
al

ity
pa

tt
er

n
of

th
e

m
os

t-
si

gn
ifi

ca
nt

di
ffe

ri
ng

bi
t

n
(3

2)
P

P
H

1
P

R
P

[K
er

15
]

1
Tr

av
er

sa
l

3
Tr

av
er

sa
ls

3
·n

·N
(8

68
42

)
In

se
rt

io
n

or
de

r

42

ask the client to sort a small list of ciphertexts). Also note that we do not allow

batch insertions as it would limit the use cases (e.g. client may require interactive

one-by-one insertions).

The first protocol is a family of constructions where a data structure (B+ tree in

this case) uses ORE schemes internally. Then, we present alternative solutions with

varying performance and security profiles, not relying on ORE. Finally, we introduce

two baseline solutions we will use in the benchmark — one that achieves the best

performance and the other that achieves the maximal security.

4.4.1 Range query protocol from ORE

So far we have analyzed OPE and ORE schemes without much context. One of

the best uses of an ORE is within a secure protocol. In this section we provide a

construction of a search protocol built with a B+ tree working on top of an ORE

scheme and analyze its security and performance.

The general idea is to consider some data structure that is optimized for range

queries, and to modify it to change all comparison operators to ORE scheme’s Cmp

calls. This way the data structure can operate only on ciphertexts. Performance

overhead would be that of using the ORE scheme’s Cmp routine instead of a plain

comparison. Space overhead would be that of storing ciphertexts instead of plaintexts.

In this paper, we have implemented a typical B+ tree [BM70] (with a proper

deletion algorithm [Jan95]) as a data structure.

For protocols, we also analyze the I/O performance and the communication cost.

In particular, we are interested in the expected number of I/O requests the server

would have made to the secondary storage, and the number and size of messages

parties would have exchanged.

The relative performance of the B+ tree depends only on the page capacity (the

longer the ciphertexts, the smaller the branching factor). Therefore, the query com-

43

plexity is O(logB (N/B) + r/B), where B is the number of records (ciphertexts) in a

block, N is the number of records (ciphertexts) in the tree and r is the number of

records (ciphertexts) in the result (none for insertions).

Communication amount of the protocol is relatively small as its insertions and

queries require at most one round trip.

Security

The leakage of this protocol consists of leakage of the underlying ORE scheme plus

whatever information about insertion order is available in the B+ tree. Please note

that Lewi-Wu [LW16] ORE is particularly well-suited in this construction with its

left / right framework, because only the semantically secure side of the ciphertext is

stored in the structure. In this case, the ORE leakage becomes only the total order

and the security of the protocol is comparable with other non-ORE constructions.

4.4.2 Kerschbaum-Tueno [KT19]

Kerschbaum and Tueno [KT19] proposed a new data structure, which satisfies their

own definitions of security (IND-CPA-DS) and efficiency (search operation has poly-

logarithmic running time and linear space complexity).

In short, the idea is to maintain a (circular) array of symmetrically encrypted

ciphertexts in order. On insertion, the array is rotated around a uniformly sampled

offset to hide the location of the smallest element. Client interactively performs a

binary search requesting an element, decrypting it and deciding which way to go.

Security

Authors prove that this construction is IND-CPA-DS secure (defined in the same

paper [KT19]). The definition assumes an array data structure and therefore serves

specifically this construction (as opposed to being generic). It provably hides the

44

frequency due to semantic encryption and hides the location of the first element due

to random rotations. Leakage-wise this construction is strictly better than B+ tree

with ORE — they both leak total order, but [KT19] hides distance information and

smallest / largest elements. Specifically, for all pairs of consecutive elements ei and

ei+1 it is revealed that ei+1 ≥ ei except for one pair of smallest and largest elements

in the set.

Analysis and implementation challenges

Insertions are I/O-heavy because they involve rotation of the whole data structure.

All records will be read and written, thus the complexity is O(N/B). Searches are

faster since they involve logarithmic number of blocks. The first few blocks can be

cached and the last substantial number of requests during the binary search will target

a small number of blocks. The complexity is then O(log2 N/B).

Communication volume is small as well. Insertion requires log2N messages from

each side. Searches require double that number because separate protocol is run for

both endpoints.

The data structure is linear in size, and the client storage is always small. Sizes

of messages are also small as only a single ciphertext is usually transferred.

For practitioners we have a few points. The construction in the original paper

[KT19] contains a typo as m and m′ must be swapped in the insertion algorithm.

Also, we have found some rare edge cases; when duplicate elements span over the

modulo, the algorithm may not return the correct answer. Both inconsistencies can

be fixed however. This protocol is not optimized for I/O operations for insertions,

and thus would be better suited for batch uploads.

45

4.4.3 POPE [RACY16]

Roche et al. [RACY16] presented a protocol, direct improvement over mOPE [PLZ13],

which is especially suitable for large number of insertions and small number of queries.

The construction is heavily based on buffer trees [Arg03] to support fast insertion and

lazy sorting.

The idea is to maintain a POPE tree on the server and have the client manipulate

that tree. POPE tree is similar to B-tree, in that the nodes have multiple children

and nodes are sorted on each level. Each node has an ordered list of labels of size L

and an unbounded unsorted set of encrypted data called buffer. Parameter L controls

the list size, the leaf’s buffer size, and the size of client’s working set. The insertion

procedure simply adds an encrypted piece of data to the root’s buffer, thus we do not

concentrate on insertion analysis in this section.

The query procedure is more complex. To answer a query, the server interacts

with the client to split the tree according to the query endpoints. On a high level, for

each endpoint the buffers are cleared (content pushed down to leaves), and nodes in

the paths are split. After that, answering a query means replying with all ciphertexts

in all buffers between the two endpoint leaves.

The authors provide cost analysis of their construction. Search operations are

expected to require O(logL n) rounds. It must be noted that the first queries will

require many more rounds, since large buffers must be sorted.

Security

This construction satisfies the security definition of frequency-hiding partial order-

preserving (FH-POP) protocol (introduced in the paper [RACY16]). According to

[RACY16, Theorem 3], after n insertions and m queries with local storage of size L,

where mL ∈ o(n), the POPE scheme is frequency-hiding partial order-preserving with

46

Ω
(

n2

mL logL n
− n

)
incomparable pairs of elements. Simply put, the construction leaks

pairwise order of a bounded number of elements. Aside from this, the construction

provably hides the frequency (i.e., equality) of the elements.

Analysis and implementation challenges

In our analysis we count each request-response communication as a round. This

is different from [RACY16] where they use streaming a number of elements as a

single round. The rationale for our approach is that if we allow persistent channels

additionally to messages, then any protocol can open a channel for each operation.

Thus, we do not allow channels for all protocols in our analysis.

Also, as noted by the authors, if L = nϵ for 0 < ϵ < 1, then the amortized

costs become O(1). While this is true, in our analysis the choice of L depends on

the storage volume block size for I/O optimizations, instead of the client’s volatile

storage capacity. Thus, the costs remain logarithmic.

Search bandwidth depends heavily on the current state of the tree. When the tree

is completely unsorted (the first query), all elements of the tree will be transferred

to split the large root, then possibly internal node will have to be split requiring

sending of N
L

elements, and so on, thus O(N + r). When the tree is completely

sorted (after a large number of uniform queries), the bandwidth will be similar to

that of a standard B+ tree — O(L logL N + r). The average case is hard to compute;

however, authors prove an upper bound on bandwidth after n insertions and m queries

— O(mL logL n+ n logLm+ n logL(lg n)).

POPE tree is not optimized for I/O the way B-tree is. Search complexity is hard

to analyze as is bandwidth complexity. In the worst-case (first query), all blocks need

to be accessed O
(
N
B
+ r

B

)
. In the best-case all nodes occupy exactly one block and

I/O complexity is the same as with B+ tree O
(
logL

N
B
+ r

B

)
. The average case is in

47

between and matters get worse as the node is not guaranteed to occupy a single block

due to the buffers of arbitrary size.

Client’s persistent storage is negligibly small — it stores the encryption key.

Volatile storage is bounded by L.

For practitioners we present a number of things to consider. Buffer within one

node is unsorted, so in the worst-case, L-sized chunks remain unordered. Due to this

property, the query result may contain up to 2(L− 1) extra entries, which the client

will have to discard from the response.

The first query after a large number of insertions will result in client sorting the

whole N elements, and thus, POPE has different performance for cold and warm

start. Also, even to navigate an already structured tree, the server has to send to the

client the whole L elements and ask where to go on all levels.

Furthermore, [RACY16] does not stress the fact that after alternating insertions

and queries, it may happen that some intermediate buffers are not empty, thus re-

turning buffers between endpoints must include intermediate buffers as well. The

consequence is that the whole subtree is traversed between paths to endpoints, unlike

the B+ tree case where only leaves are involved.

Finally, POPE tree is not optimized for I/O operations. Even if L is chosen so

that the node fits in the block, only leaves and only after some number of searches

will optimally fit in blocks. Arbitrary sized buffers of intermediate nodes and the lack

of underflow requirement do not allow for I/O optimization.

4.4.4 Logarithmic-BRC [Dem+16]

Demertzis et al. [Dem+16] introduced a novel protocol called “Logarithmic-BRC”

whose I/O complexity depends only on the result size, regardless of the database

size. The core primitive for their construction is a Searchable Symmetric Encryption

(SSE) scheme. An SSE scheme is a server-client protocol in which the server stores a

48

specially encrypted keywords-to-documents map, and a client can query documents

with keywords while the server learns neither keywords nor the documents. Note that

the map stores short document identifiers instead of the actual documents, and we

will use the term “documents” to mean “document identifiers” or “record IDs” in this

section.

The construction treats record values as documents and index ranges as keywords

so that records can be retrieved by the ranges that include them. Specifically, a client

builds a virtual binary tree over the domain of indices and assigns each record a set of

keywords, which is the path from that record to the root. This way, the root keyword

is associated with all documents and the leaf keyword is associated with only one

record.

Upon query, a client computes a cover — a set of nodes whose sub-trees cover

the requested range. A client sends these keywords to the SSE server, which returns

encrypted documents — result values. Of the several covering techniques suggested

in the protocol [Dem+16] we have chosen the Best Range Cover (BRC), because it

results in fewest nodes and does not return false-positives. Kiayias et al. [KPTZ13]

have proven that the worst-case number of nodes for domain of size N is O(logN)

and presented an efficient BRC algorithm.

Security

In a snapshot setting, this construction’s security is that of the SSE. We have used

[Cas+13] and [Cas+14] SSE schemes; their leakage in a snapshot setting is the

database size and at most some initialization parameters. Thus, the security of these

schemes is high enough to call them fully hiding in our setting. Additional access

pattern leakage comes up during queries; exact implications of this leakage remain an

open research problem but it is known that it can be harmful [KKNO16].

49

Analysis and implementation challenges

Communication involves a client sending at worst log2N keywords and server re-

sponding with the exact result.

For each keyword in the query set, server will query the SSE scheme, which will

return r documents. Therefore, server’s I/O complexity is that of SSE.

Demertzis et al. [Dem+16] have used [Cas+13] SSE scheme in their implementa-

tion, but we have found it slow it terms of I/O. Instead, we have implemented an

improved scheme [Cas+14], which directly addresses I/O optimization.

Both SSE schemes’ I/O complexity is linear with the result size r. [Cas+14]

scheme makes at most one I/O per result document in the worst-case and there are

extensions to significantly improve I/O complexity. We have implemented the pack

extension, which packs documents in blocks to fit the I/O pages. We note that this

extension can dramatically reduce the I/Os (see Section 4.5.3 and Figure 4·8).

Logarithmic-BRC is very scalable as its performance does not depend on total data

size and only degrades with the result size. Storage overhead, however, is significant.

Each record is associated with the whole path in the binary tree — log2N nodes

(keywords). The storage complexity is therefore O(N logN), and the overhead is

then a factor of logN .

Updates, while addressed in the original protocol, are not very practical in this

construction. Authors suggest using bulk-loading for updates, maintaining merge

trees, and requiring the client to do a merge once in a while. The I/O complexity of

such approach is unclear. In our implementation we perform the construction stage

only in batch mode, and thus do not include it in the analysis. We also emphasize

that the update routine was not implemented for evaluation in the original paper.

50

4.4.5 The two extremes

To put the aforementioned protocols in a context we introduce the baselines — an

efficient and insecure construction we will refer to as no encryption and maximal

security protocol we refer to as ORAM.

No encryption

This protocol is a regular B+ tree [BM70] without any ORE in it. It is the construction

one can expect to see in almost any general-purpose database.

In terms of security it provides no guarantees — all data is in the clear. In terms

of efficiency it is optimal. B+ tree data structure is optimal in I/O usage, indices

inside nodes are smallest possible (integers) and there is no overhead in comparing

elements inside the nodes as opposed to working with ORE ciphertexts.

ORAM

Oblivious Random Access Machine (ORAM) is a construction that additionally to

semantic security of a snapshot setting (see Section 4.2) provably hides the access pat-

tern — a sequence of reads and writes to particular memory locations. With ORAM

an adversary would not be able to recognize a series of accesses to the same location

and will not differentiate reads versus writes. ORAM was introduced by Goldreich

and Ostrovsky [GO96] who also proved its lower bound (strengthened in [LN18]) —

logarithmic overhead per request. A number of efficient ORAM constructions were

designed (see [CXL16] for a good survey) and we use the state-of-the-art construction,

PathORAM [Ste+13].

A generic ORAM server responds to read and write requests for a particular

address. In our baseline protocol we store B+ tree nodes in ORAM. A client works

with the tree as it normally would except each time it needs to access a node, it

communicates with ORAM.

51

In terms of security this protocol is fully hiding in the snapshot model and provably

hides the access pattern. We note that one can improve security even further by

adding noise to the result obscuring communication volume. We also note that a

practitioner can use a similar protocol with ORAM replaced with a trivial data store

and have the tree nodes encrypted. It would be fully hiding in a snapshot setting,

but we prefer the baseline that covers more than only the snapshot model.

In terms of performance this construction incurs some noticeable overhead. Re-

gardless of specific ORAM being used, each access incurs at least logarithmic overhead

according to lower bounds [GO96]. Combined with logarithmic complexity of the B+

tree itself, the complexity, both I/O and communication, is O
(
log2N

)
. We found

that PathORAM has good I/O performance, as its internal tree structure translates

into good cache affinity. Unlike in other protocols in our benchmark, ORAM client

does most of the computational work. While the server only makes I/O requests, the

client handles encryption, shuffling, and request logic.

We present this protocol as a baseline solution in terms of security over efficiency.

We have not implemented stand-alone PathORAM, but rather a simulator which

correctly reports I/O, communication and primitive usage. Surprisingly, we found

that ORAM protocol’s overhead, although higher than in ORE-based protocols, is

in-line with the most secure protocols in our benchmark.

4.5 Evaluation

All experiments were conducted on a single machine. We use macOS 10.14.2 with

8-Core 3.2GHz Intel Xeon W processor, 32GB DDR4 ECC main memory and 1TB

SSD disk. The main code is written in C# and runs on .NET Core 2.1.3.

52

Ta
bl

e
4.

2:
[B

K
R

19
,T

ab
le

s
2

an
d

3]
.

P
er

fo
rm

an
ce

of
th

e
ra

ng
e

qu
er

y
pr

ot
oc

ol
s.

O
rd

er
ed

by
se

cu
ri

ty
ra

nk
—

m
os

t
se

cu
re

be
lo

w
.
N

is
a

to
ta

ld
at

a
si

ze
,
B

is
an

I/
O

pa
ge

si
ze

,
L

is
a

P
O

P
E

tr
ee

br
an

ch
in

g
fa

ct
or

,
r

is
th

e
re

su
lt

si
ze

in
re

co
rd

s
an

d
b
ol

d
ed

ar
e

w
ea

k
po

in
ts

of
th

e
pr

ot
oc

ol
s.

T
he

ce
ll

co
nt

en
t

is
st

ru
ct

ur
ed

as
fo

llo
w

s:
to

p
va

lu
e

is
th

e
an

al
yt

ic
al

re
su

lt
in
O

no
ta

ti
on

,
bo

tt
om

va
lu

e
is

th
e

nu
m

be
r

of
re

qu
es

ts
fo

r
I/

O
re

qu
es

ts
or

nu
m

be
r

of
m

es
sa

ge
s

an
d

th
ei

r
to

ta
l
si

ze
fo

r
co

m
m

un
ic

at
io

n.
In

th
es

e
ex

pe
ri

m
en

ts
,N

=
24
7K

,B
=

4
k
B

,r
≈

24
7K
·0
.5
%

=
12
35

,a
nd

L
=

60
.

P
ro

to
co

l
I/

O
re

qu
es

ts
Le

ak
ag

e
C

om
m

un
ic

at
io

n

C
on

st
ru

ct
io

n
Q

ue
ry

C
on

st
ru

ct
io

n
Q

ue
ry

B
+

tr
ee

w
it

h
O

R
E

lo
g
B

N B

3
re

qu
es

ts
lo
g
B

N B
+

r B

44
re

qu
es

ts
S
am

e
as

O
R

E
1

2
/
17
7
B

1
2

/
34
2
B

[K
T

19
]

N B

49
4

re
qu

es
ts

lo
g
2
N B
+

r B

17
re

qu
es

ts
T
ot

al
or

d
er

lo
g
2
N

40
/
67
1
B

lo
g
2
N

86
/
1
45
3
B

[R
A

C
Y

16
]

w
ar

m
1

1
re

qu
es

t

lo
g
L

N B
+

r B

30
0

re
qu

es
ts

P
ar

ti
al

or
d
er

1
2

/
32

B

lo
g
L
N

91
4

/
34
7
k
B

[R
A

C
Y

16
]

co
ld

N
/
B

21
75

re
qu

es
ts

Fu
lly

hi
di

ng
N

49
8K

/
9

M
B

[D
em

+
16

]
—

r
40

re
qu

es
ts

Sa
m

e
as

SS
E

—
lo
g
2
N

2
/
39
1
B

O
R

A
M

lo
g
2

N B

31
re

qu
es

ts
lo
g
2

N B

(log
B

N B
+

r B

)
18

5
re

qu
es

ts
Fu

lly
hi

di
ng

(a
cc

es
s

pa
tt

er
n)

lo
g
2

N B

14
3

/
18

kB
lo
g
2

N B

49
0

/
63

kB

53

Interactive website

Additionally to making our source code, compiled binaries and Docker images avail-

able, we want to let researchers interactively run small-sized simulations. We host a

website4 where one can select a protocol (including baselines, CLOZ [Cas+18] and

both SSE schemes), cache size and policy and I/O page parameter; supply one’s own

data and query sets, and run the simulations. Simulations are run one at a time

and usually complete within seconds. The user is then able to view the result —

tables, plots, values and raw logs, which we used to build plots for this paper. Input

size on the website is limited for practical purposes and users are encouraged to run

arbitrary-size simulations using our binaries or Docker images.

4.5.1 Implementation

We have implemented most of the primitives, data structures, and constructions

ourselves. For some primitives and all schemes we provided the first open-sourced

cross-platform C# implementation. We note that neither primitives, nor schemes are

production-ready; however, we believe they can be used in research projects and pro-

totypes. We also emphasize that the B+ tree implementation we are using, although

our own with instrumentation in it, is not custom in any way, but rather standard as

defined in the original paper [BM70] with deletion algorithm by [Jan95].

This software project (22K lines of code, third of which are tests) is documented

and tested (over 97% coverage). All code including primitives, data structures,

schemes, protocols, simulation logic, benchmarks, build scripts and tests is published

on GitHub5 under CC BY-NC 4.0 license. Additionally, we have published parts of

the project as stand-alone .NET Core (nuGet) packages, and we host a web-server

where users can run simulations for small inputs (see previous subsection).
4https://ore.dbogatov.org/
5https://github.com/dbogatov/ore-benchmark

https://ore.dbogatov.org/
https://github.com/dbogatov/ore-benchmark

54

Primitives

All schemes and protocols use the same primitives, most of which we implemented

ourselves. All primitives rely on the default .NET Core AES implementation. .NET

Core uses platform-specific implementation of AES, thus leverages AES-NI CPU in-

struction. In our project all key sizes are 128 bits, as is AES block size.

We implemented AES-based PRG, which uses AES [Dwo+01] in CTR mode

[Dwo01] and caches unused entropy (as suggested in [Hou04]). For PRF, since we

need only 128-bit inputs and outputs, we used one application of AES [KL14, Propo-

sition 3.27]. For symmetric encryption we use AES with a random initialization

vector in CBC mode [KL14, Section 3.6.2]. For hash we use default .NET Core SHA-

2 implementation. For PRP, we implemented unbalanced Feistel networks [SK96] for

large inputs and Knuth shuffle [Knu16] for small inputs. Please see the README of

project’s repository6 for low-level details.

BCLO
CLW

W

Lew
i-W

u-1
6

Lew
i-W

u-8

Lew
i-W

u-4

FH
-OPE

101

102

103

104

105

Encryption
Comparison

Figure 4·1: Schemes benchmark (time in
microseconds, log scale). Lewi-Wu
parameter is the number of blocks.

AES PR
G PR

F
Hash PR

P

HG Sa
mple

r
0

3

6

9

12

15

18

21

24

27

Figure 4·2: Primitives benchmark (time
in microseconds)

6https://github.com/dbogatov/ore-benchmark

https://github.com/dbogatov/ore-benchmark

55

Schemes and protocols

We implemented schemes and protocols precisely as in the original papers. When we

found problems or improvements, we described them in implementation challenges

notes, but did not alter the original designs in our code, unless explicitly stated.

Each ORE scheme implements a C# interface; thus our own implementation of B+

tree operates on a generic ORE. For the no encryption baseline, we have a stub

implementation of the interface, which has identity functions for encryption and de-

cryption. It is important to note that all schemes and protocols use exclusively our

implementations of primitives. Thus we rule out the possible bias of one primitive

implementation being faster than the other.

Simulations

We have four types of simulations.

Protocol simulation runs both protocol stages — construction and search — on

supplied data for all protocols including all schemes coupled with B+ tree. In this

simulation we measure the primitive usage, number of ORE scheme operations (when

applies), communication volume and size, and the number of I/O requests. We inten-

tionally do not measure elapsed time, since it would be extremely inaccurate in this

setting — simulation and measurement routines take substantial fraction of time.

Scheme simulation runs all five ORE schemes and tracks only the primitive usage.

The scheme benchmark, however, is designed to track time. We use Bench-

mark.NET [NET18] to ensure that the reported time is accurate. This tool handles

issues like cold / warm start, elevating process’ priority, and performing enough runs

to draw statistically sound conclusions. This benchmark reports elapsed time up to

nanoseconds for all four schemes (excluding CLOZ [Cas+18]) and their variants.

56

482
484
486
488
490
492
494 Uniform distribution

Normal distribution
CA public employees dataset

No e
ncr

yp
tio

n

BCLO
, C

LW
W,

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm ORAM
0
4
8

12
16
20
24
28
32

(a) Construction stage number of I/O
requests

250
500
750

1,000
1,250
1,500
1,750
2,000
2,250
2,500

Uniform distribution
Normal distribution
CA public employees dataset

No e
ncr

yp
tio

n

BCLO
, C

LW
W,

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm

Log
ari

thm
ic

BRC ORAM
0

20
40
60
80

100
120
140
160
180
200

(b) Queries stage number of I/O requests

Figure 4·3: Number of I/O requests for different protocols and data distributions

320
360
400
440
480
520
560
600
640
680 ORAM avg: 17482Uniform distribution

Normal distribution
CA public employees dataset

No e
ncr

yp
tio

n

BCLO
, C

LW
W,

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm ORAM
0
4
8

12
16
20
24
28
32

(a) Construction stage communication size
(bytes transferred)

No e
ncr

yp
tio

n

BCLO
, C

LW
W,

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm

Log
ari

thm
ic

BRC ORAM
101

102

103

104

105

106

107 Uniform distribution
Normal distribution
CA public employees dataset

(b) Queries stage communication size
(transferred bytes, log scale)

Figure 4·4: Communication size for different protocols and data distributions

Finally, primitive benchmark uses the same tool, but compares the primitives. We

use it to compare different implementations of primitives (e.g. Feistel PRP vs pre-

generated permutation) and to approximate time consumption of the schemes and

protocols based on primitive usage.

57

45
60
75
90

105
120
135
150 Uniform distribution

Normal distribution
CA public employees dataset

No e
ncr

yp
tio

n

BCLO
, C

LW
W,

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm ORAM
0
5

10
15
20
25
30
35
40
45

(a) Construction stage communication
volume (number of messages)

490,500
492,000
493,500
495,000
496,500
498,000
499,500
501,000
502,500
504,000 Uniform distribution

Normal distribution
CA public employees dataset

No e
ncr

yp
tio

n

BCLO
, C

LW
W,

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm

Log
ari

thm
ic

BRC ORAM
0

150
300
450
600
750
900

(b) Queries stage communication volume
(number of messages)

Figure 4·5: Communication volume for different protocols and data distributions

4.5.2 Setup

For our simulations, we have used three datasets. Two synthetic distributions, that

are uniform (range is third of data size) and normal (standard deviation is 0.1 of

data size). The real dataset is California public employees salaries (“total pay and

benefits” column) [Tra17]. Synthetic datasets and subsets of the real dataset are

generated pseudo-randomly. Queries are generated uniformly at random with a range

as a percentage of data size.

4.5.3 Results

Primitive usage by schemes

In Table 4.1 we show the simulation-derived values of each OPE and ORE scheme’s

primitive usage. Each scheme is given 1 000 data points of each dataset. First, the

scheme encrypts each data point, then decrypts each ciphertext and then performs

five comparisons (all possible types) pairwise. This micro-simulation is repeated 100

times. Resulting values for primitive usage are averaged for each scheme. State

58

and ciphertext sizes are calculated after each operation and the values are averaged.

Please note that the simulated values are consistent with the theoretical calculations.

Benchmarks of schemes and primitives

Using the Benchmark.NET tool [NET18], we have accurately tracked the perfor-

mance of the schemes and primitives running of different parameters (see Figures 4·1
and 4·2). ORE schemes benchmark setup is the same as in primitive usage simula-

tion Section 4.5.3. Primitives were given randomly generated byte inputs and keys of

different sizes (e.g. PRP of 2 to 32 bits). Benchmark.NET decides how many times to

run the routine to get statistically sound results. For example, large variance results

in more runs. To improve the accuracy, each run is compiled in release mode as a

separate project and runs in a separate process with the highest priority.

Please note the logarithmic scale of the schemes’ performances. FH-OPE is fast

since it does not perform CPU-heavy operations and works in main memory. Lewi-

Wu performance degrades exponentially with the increase of block size mainly due

to exponential number of PRF executions and the performance of PRP degrading

exponentially. Note also that Lewi-Wu comparison takes noticeable time due to Hash

primitive usage.

In the primitives benchmark, it is clear that most primitives use AES under the

hood. PRG and PRF take less than AES because they do not include the initialization

vector generation needed for symmetric encryption. PRP is implemented as a Knuth

shuffle [Knu16] and its complexity is exponential in the input bit length. Input size

of 2 bits is shown on Figure 4·1. PRG does not discard the entropy generated by

AES cycle, so one AES cycle can supply four 32-bit integers. PRP generates the

permutation table once and does not regenerate it if the same key and number of bits

are supplied.

59

Protocols

In this experiment we have run each protocol with each of the three datasets. Dataset

sizes are 247 000 (bounded by California Employees dataset size) and the number of

queries is 1 000. Queries are generated uniformly at random with a fixed range — 0.5%

of data size. The cache size is fixed to 128 blocks, and the B+ tree branching factor

as well as block sizes for other protocols are set such that the page size is 4KiB. The

values we are measuring are the number of I/O operations, communication volume,

and size for both construction and query stages.

See Table 4.2 for the snapshot for particular distribution (CA employees). Fig-

ures 4·3 to 4·5 shows all values we tracked for all protocols and distributions. Values

for ORE based protocols are averaged. Being “cold” in our simulations means exe-

cuting the first query and being “warm” means the first query has been previously

executed. This difference makes sense only for POPE as its first query incurs dispro-

portionately large overhead by design.

Note that all ORE based protocols behave the same except when ciphertext size

matters. Thus, since BCLO, CLWW and FH-OPE have the same ciphertext size,

they create B+ trees with the same page capacity and have the same number of I/Os

for different operations. Lewi-Wu and CLOZ schemes have relatively large ciphertexts

and thus induce larger traffic (see Figure 4·4a) and smaller B+ tree branching factor

resulting in greater number of I/O requests (see Figure 4·3b). Kerschbaum protocol

requires high number of I/O requests during construction since it needs to insert an

element into the arbitrary place in an array and rotate the data structure on a disk.

POPE suffers huge penalty on the first query (see Figures 4·3b, 4·4b and 4·5b)

since it reads and sends all blocks to the client for sorting. POPE performance

improves as more queries are executed.

60

60
120
180
240
300
360
420
480
540

5% of data
10% of data
20% of data
50% of data
100% of data

No e
ncr

yp
tio

n

BCLO
, C

LW
W

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm ORAM
0
4
8

12
16
20
24
28
32

(a) Construction stage I/O requests

250
500
750

1,000
1,250
1,500
1,750
2,000 5% of data

10% of data
20% of data
50% of data
100% of data

No e
ncr

yp
tio

n

BCLO
, C

LW
W

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm

Log
ari

thm
ic

BRC ORAM
0

20
40
60
80

100
120
140
160

(b) Queries stage I/O requests

Figure 4·6: Scalability: number of I/O requests

45
60
75
90

105
120
135
150

5% of data
10% of data
20% of data
50% of data
100% of data

No e
ncr

yp
tio

n

BCLO
, C

LW
W

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm ORAM
0
5

10
15
20
25
30
35
40
45

(a) Construction stage number of messages

60,000
120,000
180,000
240,000
300,000
360,000
420,000
480,000
540,000

5% of data
10% of data
20% of data
50% of data
100% of data

No e
ncr

yp
tio

n

BCLO
, C

LW
W

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m

PO
PE

 co
ld

PO
PE

 warm

Log
ari

thm
ic

BRC ORAM
0

150
300
450
600
750
900

1,050

(b) Queries stage number of messages

Figure 4·7: Scalability: communication volume

Logarithmic-BRC does not support interactive insertions and thus its construction

stage is not benchmarked. Otherwise it is the most performant of all non-ORE

protocols. Note, however, that its performance depends on the result size, not data

size.

As expected, ORAM performs worse than the ORE-based protocols, but its per-

formance is in-line with the non-ORE protocols. It may seem that ORAM does

61

400
800

1,200
1,600
2,000
2,400
2,800
3,200
3,600
4,000

0.5% of query range
1% of query range
1.5% of query range
2% of query range
3% of query range

No e
ncr

yp
tio

n

BCLO
, C

LW
W,

FH
-OPE Lew

i-W
u

CLO
Z

Ke
rsc

hb
au

m
PO

PE

Log
ari

thm
ic

BRC (p
ack

)

Log
ari

thm
ic

BRC ORAM
0

15
30
45
60
75
90

105
120
135

Figure 4·8: Performance for different
query sizes

0 20 40 60 80 100
0

500

1000

1500

2000
Lewi-Wu
CLOZ
POPE
Logarithmic
BRC
ORAM

Figure 4·9: Performance over time
(queries)

especially bad in construction communication (Figures 4·4b and 4·5b), but it is only

because POPE has a shortcut in construction. This “debt” is being payed off during

queries (Figure 4·4b).

Note that the values do not vary a lot among different data distributions except for

I/O requests. I/O performance depends on the result size for queries, and is therefore

more sensitive to data distribution.

Also note that using an ORE scheme with relatively small ciphertext in B+ tree

does not add any substantial I/O overhead (see “No encryption”).

On Figure 4·8 it is clear that query performance does not depend substantially on

the query size, except for Logarithmic-BRC, for which the relation is linear. Note that

Logarithmic-BRC with optimally configured pack extension shows almost no growth.

This is because for large ranges BRC will return the higher nodes (keywords matching

many documents), which are optimally packed in I/O pages. As query range doubles,

higher nodes are involved increasing the chance that requested keywords have their

documents packed.

Figures 4·6 and 4·7 show Table 4.2 asymptotic values. The simulation was run

for uniform dataset of 247 000 records (hundred percent), 1 000 queries, 0.5% query

62

range and 128 blocks cache size. Kerschbaum construction I/Os and cold POPE

query values grow linearly with inputs, while the other protocols grow logarithmically,

square-logarithmically, or do not grow.

Figure 4·9 shows how the performance of protocols fluctuates as queries are pro-

cessed. Note that POPE and Logarithmic-BRC fluctuate the most (which is, in

general, undesirable), and POPE is the only protocol where cold versus warm makes

a difference.

4.6 Remarks and conclusion

Having done theoretical and practical evaluations of the protocols, we have found that

primitive usage is a much better performance measure than the plain time measure-

ments. When it comes to practical use, the observed time of a query execution is a

mix of a number of factors and I/O requests can slow the system down dramatically.

ORE-based B+ tree protocol is provably I/O optimal and can potentially be ex-

tended by using another data structure with ORE. Its security/performance trade off

is tunable by choosing and parametrizing the underlying ORE scheme. Each scheme

we considered has its own unique advantages and drawbacks. BCLO [BCLO09] is

the least secure scheme in the benchmark, but is stateless and produces numerical ci-

phertexts, so it may be used in the databases without any modifications. Frequency-

hiding OPE [Ker15] also has this property, hides the frequency of the ciphertexts,

but is stateful and requires uniform input. Lewi-Wu [LW16] is easily customizable

in terms of tuning performance to security ratio, and it offers the security benefits of

left / right framework — particuarly useful for B+ tree. CLWW [CLWW16] provides

weaker security guarantees but is the fastest scheme in the benchmark.

63

Kerschbaum protocol [KT19] offers semantically secure ciphertexts, hiding the

location of the smallest and largest of them, and has a simple implementation. The

protocol is well-suited for bulk insertions and scales well.

POPE [RACY16] offers a “deferred” B+ tree implementation. By deferring the

sorting of its ciphertexts, POPE remains more secure for the small number of queries.

POPE has the fastest insertion routine and does not reveal the order of most of its

ciphertexts. It will be more performant for the systems where there are a lot more

insertions than queries. We would also recommend to “warm up” the structure to

avoid a substantial delay upon the first query.

Logarithmic-BRC is a perfect choice for huge datasets where query result size is

limited. It is the only protocol with substantial space overhead, but it offers scalability

and perfect (in a snapshot setting) security, and a carefully chosen and configured

SSE scheme ensures that I/O grows slowly as a function of result size.

ORAM has shown the most interesting result. Its performance is not only ade-

quate, but also in-line with the other even less secure protocols. With this empir-

ical result, we expect more interest in ORAM research, possibly discovering tighter

bounds, faster constructions and efficient ways to use the schemes. The performance

of ORAM gives an upper bound on the acceptable performance level of less secure

(access pattern revealing) protocols, as practitioners will choose ORAM over both

less secure and less performant solutions.

We found our framework to be a powerful tool for analyzing the protocols, and we

hope developers of new protocols will contribute implementations and evaluate them.

An important future work is to understand better the meaning of the different

leakage profiles and their implications. Furthermore, another direction is to try to

improve the performance of the most secure schemes (e.g. [Cas+18]).

64

Chapter 5

Range queries in the persistent model

To protect the data in the outsourced database systems, various cryptographic tech-

niques are used to ensure data privacy, while allowing efficient querying. A rich

collection of attacks on such systems has emerged. Even with strong cryptography,

just communication volume or access pattern is enough for an adversary to succeed.

In this chapter we present a model for differentially private outsourced database

system and a concrete construction, Epsolute, that provably conceals the aforemen-

tioned leakages, while remaining efficient and scalable. In our solution, differential

privacy is preserved at the record level even against an untrusted server that con-

trols data and queries. Epsolute combines Oblivious Random Access Machine and

differentially private sanitizers to create a generic and efficient construction.

We go further and present a set of improvements to bring the solution to efficiency

and practicality necessary for real-world adoption. We describe the way to parallelize

the operations, minimize the amount of noise, and reduce the number of network

requests, while preserving the privacy guarantees. We have run an extensive set of

experiments, dozens of servers processing up to 10 million records, and compiled a

detailed result analysis proving the efficiency and scalability of our solution. While

providing strong security and privacy guarantees we are less than an order of magni-

tude slower than range query execution of a non-secure plain-text optimized RDBMS

like MySQL and PostgreSQL.

65

Some of the following sections were paraphrased or taken verbatim from the fol-

lowing published work.

[Bog+21] Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim,

and Adam O’Neill. “Epsolute: Efficiently Querying Databases While Providing Differ-

ential Privacy”. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer

and Communications Security — CCS ’2021. 2021. doi: 10.1145/3460120.3484786

5.1 Introduction

Secure outsourced database systems aim at helping organizations outsource their

data to untrusted third parties, without compromising data confidentiality or query

efficiency. The main idea is to encrypt the data records before uploading them to

an untrusted server along with an index data structure that governs which encrypted

records to retrieve for each query. While strong cryptographic tools can be used for

this task, existing implementations such as CryptDB [PRZB11], Cipherbase [Ara+13],

StealthDB [VGG19] and TrustedDB [BS13] try to optimize performance but do not

provide strong security guarantees when answering queries. Indeed, a series of works

[HMCK12; IKK14; CGPR15; NKW15; KKNO16; Bin+18; GRS17; IKK12; LMP18]

demonstrate that these systems are vulnerable to a variety of reconstruction attacks.

That is, an adversary can fully reconstruct the distribution of the records over the

domain of the indexed attribute. This weakness is prominently due to the access

pattern leakage: the adversary can tell if the same encrypted record is returned on

different queries.

More recently, [KKNO16; KPT20; LMP18; GLMP18; GJW19] showed that recon-

struction attacks are possible even if the systems employ heavyweight cryptographic

techniques that hide the access patterns, such as homomorphic encryption [Gen10;

Vai11] or Oblivious Random Access Machine (ORAM) [Gol87; GO96], because they

https://doi.org/10.1145/3460120.3484786

66

leak the size of the result set of a query to the server (this is referred to as com-

munication volume leakage). Thus, even some recent systems that provide stronger

security guarantees like ObliDB [EZ19], Opaque [Zhe+17] and Oblix [Mis+18] are

susceptible to these attacks. This also means that no outsourced database system

can be both optimally efficient and privacy-preserving: secure outsourced database

systems should not return the exact number of records required to answer a query.

We take the next step towards designing secure outsourced database systems by

presenting novel constructions that strike a provable balance between efficiency and

privacy. First, to combat the access pattern leakage, we integrate a layer of ORAM

storage in our construction. Then, we bound the communication volume leakage by

utilizing the notion of Differential Privacy (DP) [DMNS06]. Specifically, instead of re-

turning the exact number of records per query, we only reveal perturbed query answer

sizes by adding random encrypted records to the result so that the communication

volume leakage is bounded. Our construction guarantees privacy of any single record

in the database which is necessary in datasets with stringent privacy requirements.

In a medical HIPAA-compliant setting, for example, disclosing that a patient exists

in a database with a rare diagnosis correlating with age may be enough to reveal a

particular individual.

The resulting mechanism achieves the required level of privacy, but implemented

näıvely the construction is prohibitively slow. We make the solution practical by lim-

iting the amount of noise and the number of network roundtrips while preserving the

privacy guarantees. We go further and present a way to parallelize the construction,

which requires adapting noise-generation algorithms to maintain differential privacy

requirements.

Using our system, we have run an extensive set of experiments over cloud ma-

chines, utilizing large datasets — that range up to 10 million records — and queries

67

of different sizes, and we report our experimental results on efficiency and scalability.

We compare against best possible solutions in terms of efficiency (conventional non-

secure outsourced database systems on unencrypted data) and against an approach

that provides optimal security (retrieves the full table from the cloud or runs the

entire query obliviously with maximal padding). We report that our solution is very

competitive against both baselines. Our performance is comparable to that of unse-

cured plain-text optimized database systems (like MySQL and PostgreSQL): while

providing strong security and privacy guarantees, we are only 4 to 8 times slower in

a typical setting. Compared with the optimally secure solution, a linear scan (down-

loading all the records), we are 18 times faster in a typical setting and even faster as

database sizes scale up.

To summarize, our contributions in this work are as follows:

• We present a new model for a differentially private outsourced database system,

CDP-ODB, its security definition, query types, and efficiency measures. In our

model, the adversarial honest-but-curious server cannot see the record values,

access patterns, or exact communication volume.

• We describe a novel construction, Epsolute, that satisfies the proposed security

definition, and provide detailed algorithms for both range and point query types.

In particular, to conceal the access pattern and communication volume leakages,

we provide a secure storage construction, utilizing a combination of Oblivious

Random Access Machine [Gol87; GO96] and differentially private sanitization

[BLR13]. Towards this, we maintain an index structure to know how many and

which objects we need to retrieve. This index can be stored locally for better

efficiency (in all our experiments this is the case), but crucially, it can also be

outsourced to the adversarial server and retrieved on-the-fly for each query.

68

• We improve our generic construction to enable parallelization within a query.

The core idea is to split the storage among multiple ORAMs, but this re-

quires tailoring the overhead required for differential privacy proportionally to

the number of ORAMs, in order to ensure privacy. We present practical im-

provements and optimization techniques that dramatically reduce the amount

of fetched noise and the number of network roundtrips.

• Finally, we provide and open-source a high-quality C++ implementation of our

system. We have run an extensive set of experiments on both synthetic and real

datasets to empirically assess the efficiency of our construction and the impact

of our improvements. We compare our solutions to the näıve approach (lin-

ear scan downloading all data every query), oblivious processing and maximal

padding solution (Shrinkwrap [Bat+18]), and to a non-secure regular RDBMS

(PostgreSQL and MySQL), and we show that our system is very competitive.

5.2 Differentially private outsourced database systems

In this section we present our model, differentially private outsourced database system,

CDP-ODB, its security definition, query types and efficiency measures. It is an

extension of the outsourced database model in Section 1.1.1.

5.2.1 Adversarial model

We consider an honest-but-curious polynomial time adversary that attempts to breach

differential privacy with respect to the input database D. We observe later in Sec-

tion 5.2.1 that it is impossible to completely hide the number of records returned on

each query without essentially returning all the database records on each query. This,

in turn, means that different query sequences may be distinguished, and, furthermore,

that differential privacy may not be preserved if the query sequence depends on the

69

content of the database records. We hence, only require the protection of differen-

tial privacy with respect to every fixed query sequence. Furthermore, we relax to

computational differential privacy (following [MPRV09]).

In the following definition, the notation ViewΠ (D, q1, . . . , qm) denotes the view

of the server S in the execution of protocol Π in answering queries q1, . . . , qm with the

underlying database D.

Definition 5.2.1. We say that an outsourced database system Π is (ϵ, δ)-computa-
tionally differentially private (a.k.a. CDP-ODB) if for every polynomial time distin-
guishing adversary A, for every neighboring databases D ∼ D′, and for every query
sequence q1, . . . , qm ∈ Qm where m = poly(λ),

Pr
[
A
(
1λ,ViewΠ (D, q1, . . . , qm)

)
= 1
]
≤

exp (ϵ) · Pr
[
A
(
1λ,ViewΠ (D′, q1, . . . , qm)

)
= 1
]
+ δ + negl(λ) ,

where the probability is over the randomness of the distinguishing adversary A and
the protocol Π.

Remark 5.2.1 (Informal). We note that security and differential privacy in this
model imply protection against communication volume and access pattern leakages
and thus prevent a range of attacks, such as [CGPR15; NKW15; KKNO16].

On impossibility of adaptive queries

Non-adaptivity in our CDP-ODB definition does not reflect a deficiency of our specific

protocol but rather an inherent source of leakage when the queries may depend on

the decrypted data. Consider an adaptive CDP-ODB definition that does not fix

the query sequence q1, . . . , qm in advance but instead an arbitrary (efficient) user

U chooses them during the protocol execution with S. As before, we ask that the

S’s view is DP on neighboring databases for every such U. We observe that this

definition cannot possibly be satisfied by any outsourced database system without

unacceptable efficiency overhead. Note that non-adaptivity here does not imply that

70

the client knows all the queries in advance, but rather can choose them at any time

(e.g., depending on external circumstances) as long as they do not depend on true

answers to prior queries.

To see this, consider two neighboring databases D,D′. Database D has 1 record

with key = 0 and D′ has none. Furthermore, both have 50 records with key = 50

and 100 records with key = 100. User U queries first for the records with key = 0,

and then if there is a record with key = 0 it queries for the records with key = 50,

otherwise for the records with key = 100. Clearly, an efficient outsourced database

system cannot return nearly as many records when key = 50 versus key = 100 here.

Hence, this allows distinguishing D,D′ with probability almost 1.

To give a concrete scenario, suppose neighboring medical databases differ in one

record with a rare diagnosis “Alzheimer’s disease”. A medical professional queries the

database for that diagnosis first (point query), and if there is a record, she queries

the senior patients next (range query, age ≥ 65), otherwise she queries the general

population (resulting in more records). We leave it open to meaningfully strengthen

our definition while avoiding such impossibility results, and we defer the formal proof

to future work.

5.2.2 Query types

In this work we are concerned with the following query types:

Range queries Here we assume a total ordering on X . A query q[a,b] is associated

with an interval [a, b] for 1 ≤ a ≤ b ≤ N such that q[a,b](c) = 1 iff c ∈ [a, b] for all

c ∈ X . The equivalent SQL query is:

SELECT * FROM table WHERE attribute BETWEEN a AND b;

71

Algorithm 1 Epsolute protocol. ORAM (·) denotes an execution of ORAM protocol
(Section 2.2), where U plays the role of the client. ORAM protocol client and server
states are implicit. S \ T represents a set of valid record IDs S that are not in the
true result set T .
Πsetup

1 : User U Server S

2 : Input: D Input: ∅
3 : I ← CreateIndex (D)
4 : y = (w, rIDi , ri)

∣∣∣n
i=1

5 : ORAM (y)

6 : DS ← A (SK1, . . . , SKN) DS

7 : Output: I Output: DS

Πquery

1 : User U Server S

2 : Input: q, I Input: DS

3 : T ← Lookup (I, q) q c← B (DS, q)

4 : ytrue = (r, rIDi ,⊥)
∣∣∣
i∈T

c

5 : ynoise = (r, S \ T,⊥)|c−|T |
1

6 : R ORAM (ytrue∥ynoise)

7 : Output: R Output: ∅

Point queries Here X is arbitrary and a query predicate qa is associated with an

element a ∈ X such that qa(b) = 1 iff a = b. In an ordered domain, point queries are

degenerate range queries. The equivalent SQL query is:

SELECT * FROM table WHERE attribute = a;

5.2.3 Measuring Efficiency

We define two basic efficiency measures for a CDP-ODB.

72

Storage efficiency is defined as the sum of the bit-lengths of the records in a

database relative to the bit-length of a corresponding encrypted database. Specifi-

cally, we say that an outsourced database system has storage efficiency of (a1, a2) if the

following holds. Fix any D = {(r1, rID1 , SK1), . . . , (rn, r
ID
n , SKn)} and let n1 =

∑n
i=1|ri|.

Let Sstate be an output of S on a run of Πsetup where U has input D, and let n2 = |Sstate|.
Then n2 ≤ a1n1 + a2.

Communication efficiency is defined as the sum of the lengths of the records in

bits whose search keys satisfy the query relative to the actual number of bits sent

back as the result of a query. Specifically, we say that an outsourced database system

has communication efficiency of (a1, a2) if the following holds. Fix any q and DS
output by Πsetup, let U and S execute Πquery where U has inputs q , and output R,

and S has input DS. Let m1 be the amount of data in bits transferred between U

and S during the execution of Πquery, and let m2 = |R|. Then m2 ≤ a1m1 + a2.

Note that a1 ≥ 1 and a2 ≥ 0 for both measures. We say that an outsourced

database system is optimally storage efficient (resp., optimally communication effi-

cient) if it has storage (resp., communication) efficiency of (1, 0).

5.3 Epsolute

In this section we present a construction, Epsolute, that satisfies the security definition

in Section 5.2, detailing algorithms for both range and point query types. We also

provide efficiency guarantees for approximate and pure DP versions of Epsolute.

5.3.1 General construction

Let Q be a collection of queries. We are interested in building a differentially pri-

vate outsourced database system for Q, called Epsolute. Our solution will use these

building blocks.

73

• A (η1, η2)-ORAM protocol ORAM(·).

• An (ϵ, δ, α, β)-differentially private sanitizer (A,B) forQ and negligible β, which

satisfies the non-negative noise guarantee from Remark 2.3.1.

• A pair of algorithms CreateIndex and Lookup. CreateIndex consumes

D and produces an index data structure I that maps a search key SK to a list

of record IDs rID corresponding to the given search key. Lookup consumes I
and q and returns a list T = rID1 , . . . , rID|T | of record IDs matching the supplied

query.

Our protocol Π = (Πsetup,Πquery) of Epsolute works as shown in Algorithm 1.

Hereafter, we reference lines in Algorithm 1. See Figure 5·1 for a schematic description

of the protocol.

Setup protocol Πsetup Let U’s input be a database D = {(r1, rID1 , SK1), . . . , (rn,

rIDn , SKn)} (line 2). U creates an index I mapping search keys to record IDs corre-

sponding to these keys (line 3). U sends over the records to S by executing the ORAM

protocol on the specified sequence (lines 4 to 5). U generates a DP structure DS over

the search keys using sanitizer A, and sends DS over to S (line 6). The output of U

is I and of S is DS; final ORAM states of S and U are implicit, including encryption

key K (line 7).

Query protocol Πquery U starts with a query q and index I, S starts with a

DP structure DS. One can think of these inputs as outputs of Πsetup (line 2). U

immediately sends the query to S, which uses the sanitizer B to compute the total

number of requests c, while U uses index I to derive the true indices of the records

the query q targets (line 3). U receives c from S and prepares two ORAM sequences:

ytrue for real records retrieval, and ynoise to pad the number of requests to c to perturb

74

the communication volume. ynoise includes valid non-repeating record IDs that are

not part of the true result set T (lines 4 to 5). U fetches the records, both real and

fake, from S using the ORAM protocol (line 6). The output of U is the filtered set of

records requested by the query q; final ORAM states of S and U are implicit (line 7).

The protocols for point and range queries only differ in sanitizer implementa-

tions, see Sections 5.3.5 and 5.3.6. Note above that in any execution of Πquery we

have c ≥ q(D) with overwhelming probability 1 − β (by using sanitizers satisfying

Remark 2.3.1), and thus the protocol is well-defined and its accuracy is 1 − β. Also

note that the DP parameter δ is lower-bounded by β because sampling negative noise,

however improbable, violates privacy, and therefore the final construction is (ϵ, β)-DP.

Server User

User
ORAM

Server Storage

Search key Record ID
Salary $40K IDs 56, 46, 89
Salary $50K IDs 85, 38, 63

... ...
Record index

Quer y:
?Salar ies $40K ?$50K "

OR A M r ead r equest s

ClientDP histogram
(point queries)

DP t ree (range queries)

noise

noise

Figure 5·1: Epsolute construction

5.3.2 Security

Theorem 5.3.1. Epsolute is (β ·m)-wrong and (ϵ, δ)-CDP-ODB where the negligible
term is negl(λ) = 2 · η2.

Proof. We consider a sequence of views

View1 → View2 → View3 → View4 .

View1 is ViewΠ (D, q1, . . . , qm). View2 is produced only from DS ← A(SK1, . . . ,

SKN). Namely, compute ci ← A (DS, qi) for all i and run ORAM simulator on
∑

i ci.

75

By ORAM security,

Pr [A(View1)]− Pr [A(View2)] ≤ η2 .

View3 is produced similarly but DS ← A (SK′
1, . . . , SK′

N) instead. Note that the ci

are simply post-processing on DS via B so

Pr [A(View2)] = exp(ϵ) · Pr [A(View3)] + δ .

View4 = ViewΠ (D′, q1, . . . , qm). It follows by ORAM security

Pr [A(View3)]− Pr [A(View4)] ≤ η2 .

Putting this all together completes the proof.

5.3.3 Efficiency

For an ORAM with communication efficiency (a1, a2) and an (α, β)-differentially pri-

vate sanitizer, the Epsolute communication efficiency is (a1, a2 · α). The efficiency

metrics demonstrate how the total storage or communication volume (the number of

stored or transferred bits) changes additively and multiplicatively as the functions

of data size n and domain N . We therefore have the following corollaries for the

efficiency of the system in the cases of approximate and pure differential privacy.

Corollary 5.3.2. Epsolute is an outsourced database system with storage efficiency
(O(1), 0). Depending on the query type, assume it offers the following communication
efficiency.

Range queries
(
O(log n),O

(
2log

∗ N log n
))

Point queries (O(log n),O(log n))

Then, there is a negligible δ such that Epsolute satisfies (ϵ, δ)-differential privacy for
some ϵ.1

1Note that the existence of ϵ in this setting implies that the probability of an adversary breaking
the DP guarantees is bounded by it.

76

Proof. By using ORAM, we store only the original data once and hence, we get
optimal storage efficiency.

The communication efficiency depends on the upper bound of the error for each
sanitizer when δ > 0, as described in Section 2.3.1 and Remark 2.3.1. The most
efficient ORAM protocol to date has O(log n) communication overhead (see Sec-
tion 2.2).

Corollary 5.3.3. Epsolute is an outsourced database system with storage efficiency
(O(1), 0). Depending on the query type, assume it offers the following communication
efficiency.

Range queries (O(log n),O(logN log n))

Point queries (O(log n),O(logN log n))

Then, Epsolute satisfies ϵ-differential privacy for some ϵ.

Proof. Similarly, we derive the proof by considering the use of ORAM and the upper
bound of the error for each sanitizer when δ = 0 in Section 2.3.1.

5.3.4 Extending to multiple attributes

We will now describe how Epsolute supports multiple indexed attributes and what the

privacy and performance implications are. The näıve way is to simply duplicate the

entire stack of states of U and S, and during the query use the states whose attribute

the query targets. However, Epsolute design allows to keep the most expensive part

of the state — the ORAM state — shared for all attributes and both types of queries.

Specifically, the index I and DP structure DS are generated per attribute and query

type, while U and S ORAM states are generated once. This design is practical since

DS is tiny and index I is relatively small compared to ORAM states, see Section 5.5.

We note that in case the indices grow large in number, it is practical to outsource

them to the adversarial server using ORAM and download only the ones needed

for each query. In terms of privacy, the solution is equivalent to operating different

Epsolute instances because ORAM hides the values of records and access patterns

77

entirely. Due to Theorem 2.3.1 for non-disjoint datasets, the total privacy budget of

the multi-attribute system will be the sum of individual budgets for each attribute /

index.

Next, we choose two DP sanitizers for our system, for point and for range queries,

and calculate the α values to make them output positive values with high probability,

consistent with Remark 2.3.1.

5.3.5 Epsolute for point queries

For point queries, we use the LPA method as the sanitizer to ensure pure differential

privacy. Specifically, for every histogram bin, we draw noise from the Laplace distri-

bution with mean αp and scale λ = 1/ϵ. To satisfy Remark 2.3.1, we have to set αp

such that if values are drawn from Laplace (αp, 1/ϵ) at least as many times as the

number of bins N , they are all positive with high probability 1− β, for negligible β.

We can compute the exact minimum required value of αp in order to ensure draw-

ing positive values with high probability by using the CDF of the Laplace distribution.

Specifically, αp should be equal to the minimum value that satisfies the following in-

equality.

(
1− 1

2
e−αp·ϵ

)N

≤ 1− β

which is equivalent to

αp =

⌈
− ln

(
2− 2 N

√
1− β

)
ϵ

⌉

5.3.6 Epsolute for range queries

For range queries, we implement the aggregate tree method as the sanitizer. Specifi-

cally, we build a complete k-ary tree on the domain, for a given k. A leaf node holds

the number of records falling into each bin plus some noise. A parent node holds sum

78

Algorithm 2 Parallel Epsolute for Πγ, extends Algorithm 1. H is a random hash
function H : {0, 1}∗ → {1, . . . ,m}. γ and k̃0 are computed as in Section 5.4.2.
Πsetup of Πγ

1 : User U Server S

2 : Input: D Input: ∅
3 : I ← CreateIndex (D,m)

. .for j ∈ {1, . . . ,m} do (in parallel). .

4 :
〈
r, rID

〉
s.t. H

(
rID
)
= j

5 : y =
〈
(w, rID, r)

〉
ORAMj(y)

. endfor .

6 : DS ← A (SK1, . . . , SKN) DS

7 : Output: I Output: DS

Πquery of Πγ

1 : User U Server S

2 : Input: q, I Input: DS

3 : T1, . . . , Tm ← Lookup (I, q) q k ← B (DS, q)

4 : c c← (1 + γ)
k̃0
m

. for j ∈ {1, . . . ,m} do (in parallel) .

5 : ytrue = (r, rIDi ,⊥)
∣∣∣
i∈Tj

6 : ynoise = (r, S \ Tj ,⊥)|c−|Tj |
1

ORAMj(ytrue∥ynoise) Rj

. .endfor .

7 : Output: Rj |mj=1 Output: ∅

of the leaf values in the range covered by this node, plus noise. Every time a query

is issued, we find the minimum number of nodes that cover the range, and determine

79

the required number of returned records by summing these node values. Then, we

ask the server to retrieve the records in the range, plus to retrieve multiple random

records so that the total number of retrieved records matches the required number of

returned records.

The noise per node is drawn from the Laplace distribution with mean αh and scale

λ = logk N
ϵ

. Consistent with Remark 2.3.1, we determine the mean value αh in order

to avoid drawing negative values with high probability. We have to set αh such that

if values are drawn from Laplace
(
αh,

logk N
ϵ

)
at least as many times as the number

of nodes in the tree, they are all positive with high probability 1−β, for negligible β.

Again, we can compute the exact minimum required value of αh in order to en-

sure drawing positive values with high probability by using the CDF of the Laplace

distribution. Specifically, αh should be equal to the minimum value that satisfies the

following inequality. (
1− 1

2
e
− αh·ϵ

logk N

)nodes

≤ 1− β

which is equivalent to

αh =

⌈
− ln (2− 2 nodes

√
1− β) · logk N
ϵ

⌉
(5.1)

where nodes = k⌈logk(k−1)+logk N−1⌉−1
k−1

+N is the total number of tree nodes.

5.4 An efficient Parallel Epsolute

While the previously described scheme is a secure and correct CDP-ODB, a single-

threaded implementation may be prohibitively slow in practice. To bring the perfor-

mance closer to real-world requirements, we need to be able to scale the algorithm

horizontally. In this section, we describe an upgrade of Epsolute — a scalable parallel

solution.

80

We suggest two variants of parallel Epsolute protocol. Both of them work by op-

erating m ORAMs and randomly assigning to each of them n/m database records. For

each query, we utilize the index I to find the required records from the corresponding

ORAMs. For each ORAM, we execute a separate thread to retrieve the records. The

threads work in parallel and there is no need for locking, since each ORAM works

independently from the rest. We present two methods that differ in the way they

build and store DP structure DS, and hence the number of ORAM requests they

make.

5.4.1 No-γ-method: DP structure per ORAM

In Πno−γ, for each ORAM / subset of the dataset, we build a DP index the same way

as described in Section 5.3. We note that Theorem 2.3.1 for disjoint datasets applies

to this construction: the privacy budget ϵ for the construction is the largest (least

private) among the ϵ’s of the DP indices for each ORAM / subset of the dataset.

The communication efficiency changes because (i) we essentially add m record

subsets in order to answer a query, each having at most α extra random records, and

(ii) each ORAM holds fewer records than before, resulting in a tree of height log n
m

.

However, we cannot expect that the records required for each query are equally

distributed among the different ORAMs in order to reduce the multiplicative com-

munication cost from log n to logn
m

. Instead, we need to bound the worst case scenario

which is represented by the maximum number of records from any ORAM that is

required to answer a query. This can be computed as follows.

Let Xj be 1 if a record for answering query q is in a specific ORAMj, and 0

otherwise. Due to the random assignment of records to ORAMs, Pr [Xj = 1] = 1/m.

Assume that we need k0 records in order to answer query q . The maximum number

of records from ORAMj in order to answer q is bounded as follows.

81

Pr

[
k0∑
i=1

Xi > (1 + γ)
k0
m

]
≤ exp

(
−k0γ

2

3m

)
(5.2)

Finally, we need to determine the value of γ such that exp
(
−k0γ2

3m

)
is smaller than

the value β. Thus, γ =
√

−3m log β
k0

. The communication efficiency for each query type

is described in the following corollary.

Corollary 5.4.1. Let Πno−γ be an outsourced database system with storage efficiency
(O(1), 0). Depending on the query type, Πno−γ offers the following communication
efficiency.

Range queries
(
O
((

1 +
√

−3m log β
k0

)
log n

m

)
,O
(

log1.5 N
ϵ

m log n
))

Point queries
(
O
((

1 +
√

−3m log β
k0

)
log n

m

)
,O
(
logN

ϵ
m log n

))
Then, Πno−γ satisfies ϵ-differential privacy for some ϵ.

In our experiments, we set m as a constant depending on the infrastructure.

However, if m is set asO(log n), the total communication overhead of the construction

will still exceed the lower-bound presented in [LSY20].

5.4.2 γ-method: shared DP structure

In Πγ, we maintain a single shared DP structure DS. When a query is issued, we

must ensure that the number of records retrieved from every ORAM is the same. As

such, depending on the required noisy number of records k̃0, we need to retrieve at

most (1 + γ) k̃0
m

records from each ORAM, see Equation (5.2), for γ =
√

−3m log β

k̃0
.

Setting k̃0 = k0 +
log1.5 N

ϵ
for range queries and k̃0 = k0 +

logN
ϵ

for point queries, the

communication efficiency is as follows.

Corollary 5.4.2. Let Πγ be an outsourced database system with storage efficiency
(O(1), 0). Depending on the query type, Πγ offers the following communication effi-
ciency.

Range queries

(
O
((

1 +
√

−3m log β

k0+
log1.5 N

ϵ

)
log n

m

(
1 + log1.5 N

ϵ

))
, 0

)

82

Point queries
(
O
((

1 +
√

−3m log β

k0+
logN

ϵ

)
log n

m

(
1 + logN

ϵ

))
, 0

)
Then, Πγ satisfies ϵ-differential privacy for some ϵ.

Πγ is depicted in Algorithm 2. There are a few extensions to the subroutines and

notation from Algorithm 1. CreateIndex and Lookup now build and query the

index which maps a search key to a pair — the record ID and the ORAM ID (1 to

m) which stores the record. Lines 4 to 5 of Algorithm 2 Πsetup repeat for each ORAM

and operate on the records partitioned for the given ORAM using hash function H

on the record ID. A shared DP structure is created with the sanitizer A (line 6). In

Algorithm 2 Πquery, the total number of ORAM requests is computed once (line 4).

Lines 5 to 6 repeat for each ORAM and operate on the subset of records stored in

the given ORAM. Note that U and S implicitly maintain m ORAM states, and the

algorithm uses the (A,B) sanitizer defined in Section 5.3.

Note that we guarantee privacy and access pattern protection on a record level.

Each ORAM gets accessed at least once (much more than once for a typical query)

thus the existence of a particular result record in a particular ORAM is hidden.

5.4.3 Practical improvements

Here we describe the optimizations aimed at bringing the construction’s performance

to the real-world demands.

ORAM request batching

We have noticed that although the entire set of ORAM requests for each query is

known in advance, the requests are still executed sequentially. To address this inef-

ficiency, we have designed a way to combine the requests in a batch and reduce the

number of network requests to the bare minimum. We have implemented this method

83

over PathORAM, which we use for the (η1, η2)-ORAM protocol, but the idea applies

to most tree-based ORAMs (similar to [CLT16]).

Our optimization utilizes the fact that all PathORAM leaf IDs are known in

advance and paths in a tree-based storage share the buckets close to the root. The

core idea is to read all paths first, processes the requests and and then write all paths

back. This way the client makes a single read request, which is executed much faster

than many small requests. Requests are then processed in main memory, including

re-encryptions. Finally, the client executes the write requests using remapped leaves

as a single operation, saving again compared to sequential execution.

This optimization provides up to 8 times performance boost in our experiments.

We note that the gains in speed and I/O overhead are achieved at the expense of

main memory, which is not an issue given that the memory is released after a batch,

and our experiments confirm that. The security guarantees of PathORAM are main-

tained with this optimization, since the security proof in [Ste+13, Section 3.6] still

holds. Randomized encryption, statistically independent remapping of leaves, and

stash processing do not change.

Lightweight ORAM servers

We have found in our experiments that näıve increase of the number of CPU cores

and gigabytes of memory does not translate into linear performance improvement

after some threshold. Investigating the observation we have found that the Epsolute

protocol, executing parallel ORAM protocols, is highly intensive with respect to main

memory access, cryptographic operations and network usage. The bottleneck is the

hardware — we have confirmed that on a single machine the memory and network

are saturated quickly preventing the linear scaling.

To address the problem, we split the user party U into multiple lightweight ma-

chines that are connected locally to each other and reside in a single trust domain

84

Trusted user party U

Client

6 prunning
fake records

1 Quer y:
ages 18 t o 21

Untrusted server
party S

User

4 OR A M r eqs:
OR A M I D s
B lock I D s

2 Tr ue indices

Lightweight ORAM
machine

Lightweight ORAM
machine

KVS Store

KVS Store

KVS Store

KVS Store

3 Comput ing t he amount of noise

5 OR A M GET r equest s

5 OR A M GET r equest s

5 OR A M GET r equest s

5 OR A M GET r equest s

DP
histogram

B+ t ree

Applicat ion

DP
t ree

Figure 5·2: Parallel Epsolute construction. A user sends a query to U modeled as
the client machine, which uses local data index and DP structures to prepare a set
of ORAM requests, which are sent to respective ORAM machines. These machines
execute the ORAM protocol against the untrusted storage of S.

(e.g., same data center). Specifically, we maintain a client machine that receives

user requests and prepares ORAM read requests, and up to m lightweight ORAM

machines, whose only job is to run the ORAM protocols in parallel. See Figure 5·2
for the schematic representation of the architecture. We emphasize that U is still a

single party, therefore, the security and correctness guarantees remain valid.

85

The benefit of this approach is that each of the lightweight machines has its own

hardware stack. Communication overhead among U machines is negligible compared

to the one between U and S. The approach is also flexible: it is possible to use up to

m ORAM machines and the machines do not have to be identical. Our experiments

show that when the same number of CPU cores and amount of memory are consumed

the efficiency gain is up to 5 times.

5.5 Experimental Evaluation

We have implemented our solution as a modular client-server application in C++.

We open-sourced all components of the software set: PathORAM2 and B+ tree3

implementations and the main query executor4. We provide PathORAM and B+

tree components as C++ libraries to be used in other projects; the code is docu-

mented, benchmarked and tested (228 tests covering 100% of the code). We have

also published our datasets and query sets.5

For cryptographic primitives, we used OpenSSL library (version 1.1.1i). For sym-

metric encryption in ORAM we have used AES in CBC mode [Dwo+01; Dwo01] with

a 256-bits key (i.e., η2 = 2−256), for the hash algorithm H used to partition records

among ORAMs we have used SHA-256 algorithm [ST15]. Aggregate tree fanout k is

16, proven to be optimal in [QYL13].

We designed our experiments to answer the following questions:

Question-1 How practical is our system compared to the most efficient and most

private real-world solutions?

Question-2 How practical is the storage overhead?
2https://github.com/epsolute/path-oram
3https://github.com/epsolute/b-plus-tree
4https://github.com/epsolute/epsolute
5http://csr.bu.edu/dp-oram/

https://github.com/epsolute/path-oram
https://github.com/epsolute/b-plus-tree
https://github.com/epsolute/epsolute
http://csr.bu.edu/dp-oram/

86

Question-3 How different inputs and parameters of the system affect its perfor-

mance?

Question-4 How well does the system scale?

Question-5 What improvements do our optimizations provide?

Question-6 What is the impact of supporting multiple attributes?

For Question-1 we have run the default setting using conventional RDBMS

(MySQL and PostgreSQL), Linear Scan approach and Shrinkwrap [Bat+18]. To

target Question-2, we measured the exact storage used by the client and the server

for different data, record and domain sizes. To answer Question-3, we ran a default

setting and then varied all parameters and inputs, one at a time. For Question-4 we

gradually added CPUs, ORAM servers and KVS instances and observed the rate of

improvement in performance. To target Question-5 we have run the default setting

with our optimizations toggled. Lastly, for Question-6 we have used two datasets

to construct two indices and then queried each of the attributes.

5.5.1 Data sets

We used two real and one synthetic datasets — California public pay pension database

2019 [Tra19] (referred to as “CA employees”), Public Use Microdata Sample from US

Census 2018 [US 18] (referred to as “PUMS”) and synthetic uniform dataset. We have

used salary / wages columns of the real datasets, and the numbers in the uniform set

also represent salaries. The NULL and empty values were dropped.

We created three versions of each dataset — 105, 106 and 107 records each. For uni-

form dataset, we simply generated the target number of entries. For PUMS dataset,

we picked the states whose number of records most closely matches the target sizes

(Louisiana for 105, California for 106 and the entire US for 107). Uniform dataset

87

was also generated for different domain sizes — number of distinct values for the

record. For CA employees dataset, the set contains 260 277 records, so we contracted

it and expanded in the following way. For contraction we uniformly randomly sam-

pled 105 records. For expansion, we computed the histogram of the original dataset

and sampled values uniformly within the bins.

Each of the datasets has a number of corresponding query sets. Each query set has

a selectivity or range size, and is sampled either uniformly or following the dataset

distribution (using its CDF).

5.5.2 Default setting

The default setting uses the Πγ from Section 5.4 and lightweight ORAM machines

from Section 5.4.3 and Figure 5·2. We choose the Πγ because it outperforms Πno−γ in

all experiments (see Question-4 in Section 5.5.5). In the setting, there are 64 Redis

services (8 services per one Redis server VM), 8 ORAM machines communicating

with 8 Redis services each, and the client, which communicates with these 8 ORAM

machines. We have empirically found this configuration optimal for the compute

nodes and network that we used in the experiments. ORAM and Redis servers run

on GCP n1-standard-16 VMs (Ubuntu 18.04), in regions us-east4 and us-east1

respectively. Client machine runs n1-highmem-16 VM in the same region as ORAM

machines. The ping time between the regions (i.e. between trusted and untrusted

zones) is 12ms and the effective bandwidth is 150MB/s. Ping within a region is

negligible.

Default DP parameters are ϵ = ln(2) ≈ 0.693 and β = 2−20, which are consistent

with the other DP applications in the literature [Hsu+14]. Buckets number is set as

the largest power of k = 16 that is no greater than the domain of the dataset N .

Default dataset is a uniform dataset of 106 records with domain size 104, and

uniformly sampled queries with selectivity 0.5%. Default record size is 4KiB.

88

5.5.3 Experiment stages

Each experiment includes running 100 queries such that the overhead is measured

from loading query endpoints into memory to receiving the exact and whole query

response from all ORAM machines. The output of an experiment is, among other

things, the overhead (in milliseconds), the number of real and noisy records fetched

and communication volume averaged per query.

5.5.4 RDBMS, Linear Scan and Shrinkwrap

On top of varying the parameters, we have run similar workloads using alternative

mechanisms — extremes representing highest performance or highest privacy. Unless

stated otherwise, the client and the server are in the trusted and untrusted regions

respectively, with the network configuration as in Section 5.5.2.

Relational databases

Conventional RDBMS represents the most efficient and least private and secure solu-

tion in our set. While MySQL and PostgreSQL offer some encryption options and no

differential privacy, for our experiments we turned off security features for maximal

performance. We have run queries against MySQL and PostgreSQL varying data

and record sizes. We used n1-standard-32 GCP VMs in us-east1 region, running

MySQL version 14.14 and PostgreSQL version 10.14.

Linear Scan

Linear scan is a primitive mechanism that keeps all records encrypted on the server

then downloads, decrypts and scans the entire database to answer every query. This

method is trivially correct, private and secure, albeit not very efficient. There are

RDBMS solutions, which, when configured for maximum privacy, exhibit linear scan

89

behavior (e.g., MS-SQL Always Encrypted with Randomized Encryption6 and Oracle

Column Transparent Data Encryption7). For a fair comparison we make the linear

scan even more efficient by allowing it to download data via parallel threads matching

the number of threads and bytes per request to that of our solution. Although linear

scan is wasteful in the amount of data it downloads and processes, compared to our

solution it has a benefit of not executing an ORAM protocol with its logarithmic

overhead and network communication in both directions.

Shrinkwrap

Shrinkwrap [Bat+18] is a construction that answers federated SQL queries hiding

both access pattern and communication volume. Using the EMP-toolkit [WMK16]

and the code Shrinkwrap authors shared with us, we implemented a prototype that

only answers range queries. This part of Shrinkwrap amounts to making a scan over

the input marking the records satisfying the range, sorting the input, and then re-

vealing the result set plus DP noise to the client. For the latter part we have adapted

Shrinkwrap’s Truncated Laplace Mechanism [Bat+18, Definition 4] to hierarchical

method [QYL13] in order to be able to answer an unbounded number of all possi-

ble range queries. We have emulated the outsourced database setting by using two

n1-standard-32 servers in different regions (12ms ping and 150MB/s bandwidth)

executing the algorithm in a circuit model (the faster option per Shrinkwrap exper-

iments) and then revealing the result to the trusted client. We note that although

the complexity of a Shrinkwrap query is O(n log n) due to the sorting step, its func-

tionality is richer as it supports more relational operators, like JOIN, GROUP BY and

aggregation. We also note that since MySQL, PostgreSQL and Shrinkwrap are not
6https://docs.microsoft.com/sql/relational-databases/security/encryption/

always-encrypted-database-engine
7https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-

encryption.htm

https://docs.microsoft.com/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://docs.microsoft.com/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm
https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm

90

parallelized within the query, experiments using more CPUs do not yield higher per-

formance.

5.5.5 Results and Observations

After running the experiments, we have made the following observations. Note that

we report results based on the default setting.

• Epsolute is efficient compared to a strawman approach, RDBMS and Shrinkwrap:

it is three orders of magnitude faster than Shrinkwrap, 18 times faster than the

scan and only 4–8 times slower than a conventional database. In fact, for different

queries, datasets, and record sizes, our system is much faster than the linear scan,

as we show next.

• Epsolute’s client storage requirements are very practical: client size is just below

30MB while the size of the offloaded data is over 400 times larger.

• Epsolute scales predictably with the change in its parameters: data size affects

performance logarithmically, record size — linearly, and privacy budget ϵ — expo-

nentially.

• Epsolute is scalable: using Πγ with the lightweight ORAM machines, the increase

in the number of threads translates into linear performance boost.

• The optimizations proposed in Section 5.4.3 provide up to an order of magnitude

performance gain.

• Epsolute efficiently supports multiple indexed attributes. The overhead and the

client storage increase slightly due to a lower privacy budget and extra local indices.

For the purposes of reproducibility we have put the log traces of all our experi-

ments along with the instructions on how to run them on a publicly available page

91

epsolute.org. Unless stated otherwise, the scale in the figures is linear and the x-axis

is categorical.

Question-1: against RDBMS, Linear Scan and Shrinkwrap

Figure 5·3: Different range-query mechanisms, logarithmic scale. Default setting: 106
4KiB uniformly-sampled records with the range 104.

The first experiment we have run using Epsolute is the default setting in which we

observed the query overhead of 840ms. To put this number in perspective, we com-

pare Epsolute to conventional relational databases, the linear scan and Shrinkwrap.

For the default setting, MySQL and PostgreSQL, configured for no privacy and

maximum performance, complete in 97ms and 220ms respectively, which is just 8

to 4 times faster than Epsolute, see Figure 5·3. Conventional RDBMS uses efficient

indices (B+ trees) to locate requested records and sends them over without noise and

encryption, and it does so using less hardware resources. In our experiments RDBMS

performance is linearly correlated with the result and record sizes.

Linear scan experiments demonstrate the practicality of Epsolute compared to

a trivial “download everything every time” approach, see Figure 5·4. Linear scan’s

overhead is O(n) regardless of the queries, while Epsolute’s overhead is O(log n)
times the result size. According to our experiments, Epsolute eclipses the linear scan

at 4KiB, 64 threads and only ten thousand records (both mechanisms complete in

https://epsolute.org

92

Figure 5·4: Linear scan performance, logarithmic scale. The experiments are run for
the default setting of 106 records of size 4KiB and 64 threads, with one of the three
parameters varying.

about 120ms). For a default setting (at a million records), the difference is 18 times,

see Figure 5·4.

Because Shrinkwrap sorts the input obliviously in a circuit model, it then in-

curs O(n log n) comparisons, each resulting in multiple circuit gates, which is much

more expensive than the linear scan. Unlike linear scan, however, Shrinkwrap does

not require much client memory as the client merely coordinates the query. While

Shrinkwrap supports richer set of relational operators, for range queries alone Epso-

lute is three orders of magnitude faster.

Question-2: storage

While Epsolute storage efficiency is near-optimal (O(1), 0), it is important to observe

the absolute values. Index I is implemented as a B+ tree with fanout 200 and

occupancy 70%, and its size, therefore, is roughly 5.7n bytes. Most of the ORAM

client storage is the PathORAM stash with its size chosen in a way to bound failure

probability to about η1 = 2−32 (see [Ste+13, Theorem 1]). In Table 5.1, we present

Epsolute storage usage for the parameters that affect it — data, record and domain

sizes. We measured the sizes of the index I, DP structure DS, and ORAM client

93

n

Record
1KiB 4KiB 16KiB

105
400 KiB 400 B 400 KiB 102 KiB 400 KiB 1.6 MB

396 MB 4.6 MB 1.5 GB 14 MB 6.2GB 51 MB

106
3.9 MB 400 B 3.9 MB 102 KiB 3.9 MB 1.6 MB

3.2GB 15 MB 12GB 25 MB 48GB 62 MB

107
40 MB 400 B 40 MB 102 KiB 40MB 1.6MB

24GB 99 MB 96GB 109 MB 384GB 146MB

n

N
100 104 106

Table 5.1: Epsolute storage usage for varying data, record and domain sizes. The
values are as follows. Left top: index I (B+ tree), right top: aggregate tree DS, right
bottom: ORAM U state and left bottom (bold): ORAM S state. Italic indicates that
the value is estimated.

and server states. Our observations are: (i) index size expectedly grows only with

the data size, (ii) DS is negligibly small in practice, (iii) small I and DS sizes imply

the efficiency of supporting multiple indexed attributes, (iv) S to U storage size ratio

varies from 85 in the smallest setting to more than 2 000 in the largest, and (v) one

can trade client storage for ORAM failure probability. We conclude that the storage

requirements of Epsolute are practical.

Question-3: varying parameters

To measure and understand the impact of configuration parameters on the perfor-

mance of our solution we have varied ϵ, record size, data size n, domain size N ,

selectivities, as well as data and query distributions. The relation that is persistent

throughout the experiments is that for given data and record sizes, the performance

(the time to completely execute a query) is strictly proportional to the total number

of records, fake and real, that are being accessed per query. Each record access goes

94

Figure 5·5: Privacy budget ϵ Figure 5·6: Effect of ϵ

through the ORAM protocol, which, in turn, downloads, re-encrypts and uploads

O(log n) blocks. These accesses contribute the most to the overhead and all other

stages (e.g., traversing index or aggregate tree) are negligible.

Privacy budget ϵ and its effect We have run the default setting for ϵ = {0.1, 0.5,
ln 2, 1.0, ln 3}. ϵ strictly contributes to the amount of noise, which grows exponentially

as ϵ decreases, see Figure 5·5, observe sharp drop. As visualized on Figure 5·6, at

high ϵ values the noise contributes a fraction of total overhead, while at low values

the noise dominates the overhead entirely.

Figure 5·7: Selectivity

95

Selectivity We have ranged the selectivity from 0.1% to 2% of the total number

of records, see Figure 5·7. Overhead expectedly grows with the result size. For

smaller queries, and thus for lower overhead, the relation is positive, but not strictly

proportional. This phenomena, observed for the experiments with low resulting per-

query time, is explained by the variance among parallel threads. During each query

the work is parallelized over m ORAMs and the query is completed when the last

thread finishes. The problem, in distributed systems known as “the curse of the last

reducer” [SV11], is when one thread takes disproportionally long to finish. In our case,

we run 64 threads in default setting, and the delay is usually caused by a variety of

factors — blocking I/O, network delay or something else running on a shared virtual

CPU. This effect is noticeable when a single thread does relatively little work and

small disruptions actually matter; the effect is negligible for large queries.

Figure 5·8: Record size Figure 5·9: Data size Figure 5·10: Domain size

Record, data and domain sizes We have tried 1KiB, 4KiB and 16KiB records,

see Figure 5·8. Trivially, the elapsed time is directly proportional to the record size.

We set n to 105, 106 and 107, see Figure 5·9. The observed correlation of overhead

against the data size is positive but non-linear, 10 times increment in n results in less

than 10 times increase in time. This is explained by the ORAM overhead — when n

changes, the ORAM storage gets bigger and its overhead is logarithmic.

96

For synthetic datasets we have set N to 100, 104 and 106, see Figure 5·10. The

results for domain size correlation are more interesting: low and high values deliver

worse performance than the middle value. Small domain for a large data set means

that a query often results in a high number of real records, which implies significant

latency regardless of noise parameters. A sparse dataset, on the other hand, means

that for a given selectivity wider domain is covered per query, resulting in more nodes

in the aggregate tree contributing to the total noise value.

Figure 5·11: Data distribution Figure 5·12: Query distribution

Data and query distributions Our solution performs best on the uniform data

and uniform ranges, see Figures 5·11 and 5·12. Once a skew of any kind is introduced,

there appear sparse and dense regions that contribute more overhead than uniform

regions. Sparse regions span over wider range for a given selectivity, which results in

more noise. Dense regions are likely to include more records for a given range size,

which again results in more fetched records. Both real datasets are heavily skewed

towards smaller values as few people have ultra-high salaries.

97

Figure 5·13: Scalability measurements for Πγ and Πno−γ

Question-4: scalability

Horizontal scaling is a necessity for a practical system, this is the motivation for the

parallelization in the first place. Ideally, performance should improve proportionally

to the parallelization factor, number of ORAMs in our case, m.

For scalability experiments we run the default setting for both Πno−γ and Πγ (no-

γ-method and γ-method respectively) varying the number of ORAMs m, from 8 to 96

(maximum virtual CPUs on a GCP VM). The results are visualized on Figure 5·13.

We report two positive observations: (i) the γ-method provides substantially better

performance and storage efficiency, and (ii) when using this method the system scales

linearly with the number of ORAMs. (m = 96 is a special case because some ORAMs

had to share a single KVS.)

Question-5: optimizations benefits

Improvement (section) Enabled Disabled Boost
ORAM batching (5.4.3) 840ms 6 978ms 8.3x
Lightweight ORAM machines (5.4.3) 840ms 4 484ms 5.3x
Both improvements 840ms 8 417ms 10.0x

Table 5.2: Improvements over parallel Epsolute

98

Table 5.2 demonstrates the boosts our improvements provide; when combined, the

speedup is up to an order of magnitude.

ORAM request batching (Section 5.4.3) makes the biggest difference. We have

run the default setting with and without the batching. The overhead is substantially

smaller because far fewer I/O requests are being made, which implies benefits across

the full stack: download, re-encryption and upload.

Using lightweight ORAM machines (Section 5.4.3) makes a difference when scal-

ing. In the default setting, 64 parallel threads quickly saturate the memory access and

network channel, while spreading computation among nodes removes the bottleneck.

Question-6: multiple attributes

Figure 5·14: Query overhead when using multiple attributes. Only A and Only B
index one attribute. A and B indexes both attributes and then queries one of them.
Alternating indexes both attributes and runs half of the queries against A and another
half against B.

Epsolute supports multiple indexed attributes. In Section 5.3.4 we described that

the performance implications amount to having an index I and a DP structure DS
per attribute and sharing the privacy budget ϵ among all attributes. As shown in

Table 5.1, I and DS are the smallest components of the client storage. To observe

99

the query performance impact, we have used the default dataset with domains 104

and 106 as indexed attributes A and B respectively. We ran queries against only A,

only B and against both attributes in alternating fashion. Each of the attributes used

ϵ = ln 2
2

to match the default privacy budget of ln(2).

Figure 5·14 demonstrates the query overhead of supporting multiple attributes.

The principal observation is that the overhead increases only slightly due to a lower

privacy budget. The client storage went up by just 9MB, and still constitutes only

3.3% of the server storage, which is not affected by the number of indexed attributes.

5.6 Conclusion and Future Work

In this work, we present a system called Epsolute that can be used to store and

retrieve encrypted records in the cloud while providing strong and provable security

guarantees, and that exhibits excellent query performance for range and point queries.

We use an optimized Oblivious Random Access Machine protocol that has been par-

allelized together with very efficient DP-sanitizers that hide both the access patterns

and the exact communication volume sizes and can withstand advanced attacks that

have been recently developed. We provide a prototype of the system and present an

extensive evaluation over very large and diverse datasets and workloads that show

excellent performance for the given security guarantees.

In our future work, we plan to investigate methods to extend our approaches

to use a Trusted Execution Environment (TEE), like SGX, in order to improve the

performance even further. We will also explore a multi-user setting without the

need for a shared stateful client, and enabling dynamic workloads with insertions

and updates. We will also consider how adaptive and non-adaptive security models

would change in the case of dynamic environments. Lastly, we plan to explore other

relational operations like JOIN and GROUP BY.

100

Chapter 6

kNN queries in the snapshot model

In this chapter we describe and analyze k-anon, a system that executes secure kNN

queries in the snapshot adversary model. We study the effect of protecting the records

with a type of property-preserving encryption on quality of search and efficiency of

certain attacks. Specifically, we examine theoretically and practically how accuracy

of both kNN search and ML-based inversion attack degrade with added security.

6.1 Introduction

Nearest-neighbor search is a type of optimization problem that, given a set of objects

and a distance metric, requires finding the object closest to a given point according

to the distance metric. A k-nearest-neighbor (kNN) search is a subtype of a general

nearest-neighbor problem where k closest objects are requested. Applications that use

kNN search only need to define the objects and the metric. For example, a street map

application would define the 2D coordinates of the buildings as objects and Euclidean

distance as a metric, then the query could be “give 5 restaurants closest to the current

user position”. A document search application would define the keyword vector for

a document as an object and an inner product distance as a metric, then the query

could be “give 3 documents most similar to the given text” (similar applications may

search images, videos and sounds).

In this chapter we propose a method and an analysis of running secure kNN

queries in an outsourced database model. We model our application as a generic

101

document similarity search, where the server stores the embeddings of the documents

and returns the k closest records to the query embedding. We propose to apply a type

of property-preserving encryption over the embeddings on the server while retaining

its ability to do nearest-neighbor search. Finally, we simulate an attack against the

records — an ML-based inversion attack that aims to recover the set of words of

a document from its embedding. Our goal is to observe and study the correlation

of the security parameter (an approximation term) with search accuracy and attack

efficiency.

To summarize, our contributions in this work are as follows:

• We construct k-anon — a secure similarity search system in snapshot adversary

setting. We analyze the correlation of system’s security with search accuracy

and attack efficiency, and conclude on practicality of the k-anon system.

• We implement a Distance Comparison Preserving Encryption (DCPE) scheme

from [FGHO21] and adapt it to encrypt text embeddings. We analyze the

practical aspects of DCPE scheme’s security (e.g., the effects of floating point

representation) and benchmark the construction.

• We conduct a set of experiments to study the effect of the security parameter

on search accuracy. We use a fine-tuned BERT model to produce embeddings

for the TREC 2020 collection. Given the TREC validation set (i.e., “correct

answers”) we run the search for varying security levels and report a number of

ranking quality measures.

• We adapt a recent ML-based inversion attack by Song and Raghunathan [SR20]

against embeddings in our setting. The attack works by training an LSTM

model on pairs of sentences and their embeddings. We run this attack for

varying security levels, and training on both plaintext and encrypted records.

102

6.2 Distance Comparison Preserving Encryption

A promising approach in secure kNN evaluation is using a property-preserving encryp-

tion scheme to allow the existing search algorithms to work with minimal alterations.

ASPE scheme by Wong et al. [WCKM09] is a step in this direction, but their scheme

has been shown insecure under a type of chosen plaintext attack in [YLX13]. Using

a common OPE scheme over vector values to encrypt the objects for the purpose

of running kNN queries on them has been explored in [WHL20], but this approach

incurs high overhead linear in dimensionality. See more detailed related work analy-

sis in Section 3.3. We, therefore, need a different method — a scheme that operates

over high-dimensional vectors and preserves a property that is required to answer the

nearest-neighbor queries.

A classical nearest-neighbor search [WL83; CD21] simply orders the objects ac-

cording to their distances from the target. It is important to note that knowing the

exact distance is not required, merely the knowledge of distance comparison suffices

(i.e., x is closer to y than z is). An encryption scheme that preserves the distance

comparison would satisfy the kNN search correctness, but not necessarily security or

even practicality. First, a fully deterministic Distance Comparison Preserving En-

cryption (DCPE) would reveal at least the frequency of data points (i.e., how many

times a point appears in the dataset). Second, even in the plaintext world the use

of approximate nearest-neighbor search [ML14; Ary+98] may be preferred due to

the curse of dimensionality [BGRS99; IM98] (the exact distance is less important in

higher dimensions).

6.2.1 DCPE construction

A candidate approximate DCPE scheme that we adapt to our solution has been

recently proposed by Fuchsbauer et al. [FGHO21]. The scheme provides the following

103

guarantee on its ciphertexts

∀x, y, z ∈ X : Dist (x, y) < Dist (x, z)− β

=⇒ Dist (f(x), f(y)) < Dist (f(x), f(z))

where X ⊆ Rd is the set of d-dimensional vectors of real numbers, Dist is the L2

distance over elements in X, and β is the approximation term. Parameter β partially

defines the security of the encrypted set — the larger β, the fewer distance compar-

isons are preserved, the less accurate the search and the reconstruction attacks would

be. Fuchsbauer et al. [FGHO21] prove protection against membership inference at-

tacks [YGFJ18] (whether an individual is in the database or not), and against the

approximate frequency-finding attacks (how many times the element appears in the

set, see [Gru+17] for ORE frequency attacks). As for the choice of β, Fuchsbauer

et al. [FGHO21] prove that β ≈
√
maxN would hide about half of the input bits, for

maxN being the maximum vector length in the dataset.

Algorithm 3 Distance Comparison Preserving Encryption scheme, adapted from
[FGHO21, Algorithm 2].
KeyGen

(
1λ, S

)
1 : s←$ S
2 : k←$ {0, 1}λ
3 : return (s, k)

Enc((s, k), m⃗)

1 : n←$ {0, 1}λ
2 : coinsn||coinsu ← PRF (k, n)

3 : n⃗←$ Normal (0, Id; coinsn)

4 : u←$ Uniform (0, 1; coinsu)

5 : x← sβ

4
· d
√
u

6 : δ⃗ ← n⃗

∥n⃗∥ · x

7 : c⃗← s · m⃗+ δ⃗

8 : return c⃗

Dec((s, k), (c⃗, n))

1 : coinsn||coinsu ← PRF (k, n)

2 : n⃗←$ Normal (0, Id; coinsn)

3 : u←$ Uniform (0, 1; coinsu)

4 : x← sβ

4
· d
√
u

5 : δ⃗ ← n⃗

∥n⃗∥ · x

6 : m⃗← c⃗− δ⃗

s
7 : return m⃗

Fuchsbauer et al. [FGHO21] offer an instantiation of the β-DCPE scheme (though

not an implementation) that we have adapted to our needs and show on Algorithm 3.

104

The KeyGen procedure generates a key k and an amplification factor s. The key

participates in generating the random coins needed to produce deterministic execu-

tion, and the amplification factor controls the magnitude of projection of a plaintext

object into the ciphertext.

The Enc procedure “encrypts” an object by moving it in space in a way that

makes it hard to recover its original position while its distance-comparison respective

to other encrypted points is preserved. The algorithm first constructs a hypersphere of

radius β, the approximation term, around the input point. The routine then samples

a new point uniformly inside that hypersphere. Finally, that new point is projected

into the ciphertext point according to the amplification factor s. Note that for each

encryption the scheme generates a fresh nonce n and uses it along with the key k

to generate the coins for the samplers. That is, the point in the β-hypersphere is

deterministically set from the nonce (“number used only once”, unique per point)

and the key (one for all points), and the final ciphertext is projected the same way

for all points. The Dec procedure makes the same steps in reverse, correctly setting

the point in the hypersphere using the nonce and the key. See Figure 6·1 for a visual

example of DCPE encryption.

6.2.2 DCPE security

The security of the scheme thus depends on (i) the maximum amount of amplification,

(ii) the radius of the hypersphere β, and (iii) the entropy of the samplers. Fuchsbauer

et al. [FGHO21] show that the amplification, s parameter, affects one-wayness bounds

[FGHO21, Section 7.2]. The approximation term β affects bit-security with β ≈
√
maxN protecting about half of the bits. Finally, the key k and nonce n sizes, the

security parameter 1λ, and the samplers used to generate normal multivariate and

uniform samples affect the specific amount of entropy used to generate a point in the

hypersphere.

105

y y’

f(y)

x

z

Figure 6·1: Schematic description of encryption process of DCPE, drawn to scale. In
this diagram, there are two dimensions (d = 2), β (the radius of a circle) is 2 units,
and s (the projection magnitude, the length from the origin to the larger circle over
the length to the smaller one) is 2. The encrypted point is uniformly sampled inside
a β-sphere, then projected s times further from the origin. If two points are too close,
their circles intersect, and their encryptions can be sampled in a way that breaks
distance comparison. Intuitively, larger β implies greater ciphertext space for a point
and greater security.

As the construction operates on real numbers, an open question remains on how to

avoid negative side-effects of floating point numbers bit representation. Unlike inte-

gers, floating point numbers are represented in memory in a way that their precision is

different depending on their value, see the IEEE 754-2019 standard [Dav19]. Simply

put, the closer the value is to zero, the smaller the difference between two consecutive

representable values is. For example, while the representable 32-bit IEEE 754 floating

106

point values range from about 1.18 · 10−38 to 3.4 · 1038, there are only 232 ≈ 4 · 109,
4 billion representable discrete numbers. This, along with the rounding errors, puts

some limits on how large s and β can be.

6.2.3 DCPE implementation and benchmarks

We offer the first implementation of [FGHO21] β-DCPE for 32-bit and 64-bit IEEE

754 numbers in C++.1 The code is documented, tested and benchmarked, see Ta-

ble 6.1. Observe that the difference in performance between encryption and decryp-

tion is predictably minimal, and the overhead of encryption grows slower-than-linearly

with dimensionality.

Operation Input size Dimensions d Wall-clock time

KeyGen N/A N/A 1.81ms

Enc

32-bit (float)
1 4.12ms

100 12.2ms
768 62.0ms

64-bit (double)
1 3.96ms

100 11.4ms
768 59.3ms

Dec

32-bit (float)
1 3.94ms

100 11.6ms
768 62.1ms

64-bit (double)
1 3.96ms

100 11.3ms
768 59.6ms

Table 6.1: DCPE implementation benchmarks

1https://github.com/private-knn/dcpe

https://github.com/private-knn/dcpe

107

6.3 kNN search accuracy

The first part of k-anon is the search accuracy. In this set of experiments, we embed

the documents and apply β-DCPE to the embeddings. We use existing efficient kNN

search algorithms and report ranking quality metrics for different β.

6.3.1 Secure kNN protocol

With the β-DCPE as a component, we can model the k-anon protocols similar to

ORE with B+ tree ones. In the setup protocol Πsetup, U simply encrypts the entire

input, one vector at a time, and sends the encrypted data over to S. In the query

protocol Πquery, U encrypts the query with DCPE, sends the ciphertext to S, while

S runs a standard kNN search against the ciphertext. k encrypted vectors are then

returned to U, which decrypts them as the last step. These protocols are executed

for a single set of secrets and DCPE parameters, including β.

For the choice of the dataset, we use the established information retrieval TREC

2020 test collections (MS MARCO passage retrieval collection [Baj+16]). A TREC

collection consists of a set of documents, a set of topics (questions) and a corre-

sponding set of relevance judgments (correct answers). The benefit of using a TREC

dataset is being able to evaluate relevant metrics over the produced results, for ex-

ample, MRR [Cra09] and nDCG [JK02]. We can then track how these metrics, along

with the simpler edit distance and set difference over the result, degrade with higher

security.

As the embedding mechanism, we use a custom fine-tuned BERT model. Bidi-

rectional Encoder Representation from Transformer (BERT) is a transformer-based

ML technique for Natural Language Processing. An original BERT model, published

by Devlin et al. [DCLT19], has been trained on a BookCorpus [Zhu+15] (800 million

words) and English Wikipedia (2.5 billion words) using 24 encoders with 16 bidi-

108

rectional self-attention heads (for the larger of two versions, BERTLARGE). BERT’s

main novelty is its bidirectional nature — it processes all words in relation to each

other and not one-by-one. The technology is now prevalent [RKR21], and Google

uses BERT in almost every English query2.

It is common, however, to use the original BERT model as a base and do training

on top. We trained a BERT-based dense retrieval model that uses BERT for repre-

senting both queries and documents and inner product for computing their similarity

[Hof+21]. The parameters between both BERT models (for queries and documents)

are shared. We used cross entropy loss function for training and used the standard

MS MARCO [Baj+16] training set. The produced vectors by the BERT model are

used in our experiments for approximate nearest neighbor indexing of documents and

retrieval for queries. We used the test queries produced by the Deep Learning Track

of the Text Retrieval Conference (TREC) in 2020 in our experiments.

6.3.2 Experimental evaluation

The actual experiment is conducted as follows. First, we produce a set of embeddings

for 8.8 million documents and 200 queries from TREC 2020 dataset. We observed

that the maximum length of an embedding vector is about
√
maxN ≈ 11 units.

Second, we encrypt the record and query embeddings using DCPE and range β from

0 (meaning exact distance-comparison) to 50, with β =
√
11 ≈ 3.3 hiding about

half of the bits of input embeddings. Third, we run the nearest neighbor search on

these pairs of data and queries sets using FAISS [JDJ21], a GPU-enabled library for

efficient similarity search and clustering of dense vectors. Finally, we report a range

of ranking quality metrics and generic kNN result metrics.
2https://searchengineland.com/google-bert-used-on-almost-every-english-query-

342193

https://searchengineland.com/google-bert-used-on-almost-every-english-query-342193
https://searchengineland.com/google-bert-used-on-almost-every-english-query-342193

109

Ranking quality metrics

We report recall, Mean Reciprocal Rank (MRR) [Cra09] and Normalized Discounted

Cumulative Gain (nDCG) [JK02] to assess the ranking quality with respect to TREC

relevance judgments.

Recall is the fraction of relevant documents that the query retrieved over all rele-

vant documents.

Mean Reciprocal Rank (MRR) is the average of reciprocal ranks of a query re-

sponse, which is a multiplicative inverse of the rank of the first correct answer. MRR

is defined as

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
,

where Q is the sample of queries and ranki is the rank position of the first relevant

document for the ith query.

Normalized Discounted Cumulative Gain (nDCG) is another measure of ranking

quality most used in web search engine algorithms. Its main goal is to produce a metric

that would promote the following two assumptions. First, a document’s relevance

implies its usefulness, and second, highly relevant documents are more useful if they

have higher rank (appear earlier in the result list). nDCG is a normalized version

of discounted cumulative gain, and is defined as the actual over ideal gain up to a

position p

nDCGp =
DCGp

IDCGp

=

∑p
i=1

relevancei
log2(i+1)∑Rel(p)

i=1
relevancei
log2(i+1)

,

where relevancei is the graded relevance of the result at position i and Rel (p) is the

number of relevant documents in the corpus up to position p. Note that we use the

classic definition by Järvelin and Kekäläinen [JK02], and not the one by Burges et al.

[Bur+05] that puts even greater emphasis on relevance.

110

We measure all three metrics at certain cutoffs, meaning that if the number of

returned documents is smaller than the cutoff, the missing documents are assumed

to be irrelevant. The cutoff for recall is 1 000 and for MRR and nDCG is 10, as is

common in the information retrieval literature.

To keep track of the isolated effect of the approximation factor on the kNN results,

we also report the set difference and Damerau-Levenshtein distance [Lev66; Dam64] of

actual and expected kNN results. Result distance is measured as the minimal number

of insert, delete and swap operations to get one set from the other. The inclusion

of swap operation makes metric penalize less the case when the search returned the

correct set with only a few documents transposed. This property is especially useful

for us since the approximate distance comparison preservation results exactly in this

kind of small error in the output. Result difference is simply a set difference of two

outputs. This metric does not penalize the wrong order of documents as long as all k

relevant documents are present. For ease of exposition, we report these two metrics

as the fraction of total number of returned documents. That is, for 1 000 returned

documents the distance of 853 would be reported as 85.3%.

6.3.3 Results for varying β

We run two sets of experiments to see how these metrics change with varying the

security parameter β. For the first set of β values, we ranged the parameter from 0

to 50 with increments of 1.0, see Figure 6·2. Higher values of β predictably degraded

the search accuracy, but we wanted to see how quickly and after which values of β

the accuracy starts to fall noticeably.

First, we notice that the result difference grows close to linearly with β, which

means that each new security level knocks out a few correct responses from the set

proportionally. Second, we see that the result distance jumps immediately to almost

100%, which means that even a tiny approximation term significantly perturbs the

111

Figure 6·2: Search accuracy for β ∈ {0.0, . . . , 50.0}

order of the responses, but given low difference between the answer sets, not the

content of the result. Finally, we observe that at about β = 9, the TREC metrics

start to fall sharply and throughout the entire range of β they fall in accord.

For the maximum vector length of
√
maxN ≈ 11, the β value that hides half

of the input bits is β =
√
11 ≈ 3.3. To see the metrics behavior at around this

point, we ran the experiments again, now ranging β in finer manner, from 0.0 to 5.0

with increments of 0.1, see Figure 6·3. We confirm that for β =
√
maxN ≈ 3.3, the

values of the ranking quality metrics are sufficiently close to the plaintext values. We

therefore conclude that the bit-security DCPE offers comes with a low search accuracy

penalty.

112

Figure 6·3: Search accuracy for β ∈ {0.0, . . . , 5.0}. Highlighted is β =
√
maxN for

maxN ≈ 11 being the longest vector in the dataset.

6.4 Security against attacks

The second part of k-anon is the protection against attacks. In this set of experiments,

we adapt a recent ML-based attack by Song and Raghunathan [SR20]. Song and

Raghunathan [SR20] offer three attacks against text embeddings: (i) the inversion

attack, which recovers a set of words from a document embedding, (ii) the attribute

inference attack that recovers some property of the document by its embedding,

such as the gender or age of its author, and (iii) the membership inference attack,

which reveals whether a given document was or was not in the training set for the

embedding model. The inversion attack can be run in two modes: white-box and

black-box. The white-box attack assumes the access to an embedding model and

113

therefore can directly use its architecture and parameters to invert the inputs. The

black-box attack relies only on being able to use the model to produce an embedding

from a document, similar to how a generic embedding API would work. We use this

latter black-box inversion attack in our experiments since it most closely matches the

adversary capabilities in our outsourced database setting.

6.4.1 Black-box model inversion attack [SR20]

The black-box inversion attack assumes no knowledge of the embedding model; it can

only use it to produce the embeddings. In this section we follow the original notation

by Song and Raghunathan [SR20].

The attack works by training another model Υ to recognize the correlation be-

tween the set of words W(x) of a document x and its embedding Φ(x). The attacker

uses some auxillary dataset Daux (same domain works predictably better than cross

domain), and produces a collection of (Φ(x),W(x)) for all x ∈ Daux. The adver-

sary then trains the attack model Υ to maximize log PrΥ(W(x)|Φ(x)) over dataset

(Φ(x),W(x)). Finally, the adversary simply queries the model with the embedding

Υ(Φ(x)) and recovers the original words W(x).

Song and Raghunathan [SR20] offer two models for the inversion attack. The

Multi-Label Classification (MLC) model assigns a binary label of whether a word is

in the set for each word in the dictionary. The objective function is

LMLC = −
∑
w∈V

[yw log(ŷw) + (1− yw) log(1− ŷw)]

where

• V is a set of possible words, a dictionary,

• ŷw = PrΥ(yw|Φ(x)) is the predicted probability of word w given Υ conditioned

on Φ(x), and

114

• yw = 1 if word w is in x and 0 otherwise.

A disadvantage of MLC model is that it predicts all words independently. Song

and Raghunathan [SR20] therefore offer a more sophisticated approach based on

[Wel+18]. A Multi-Set Prediction (MSP) recurrent neural network predicts the next

word in the set conditioned on the embedding Φ(x) and the up-to-date predicted set

of words. The objective function is

LMSP =
ℓ∑

i=1

1

|Wi|
∑
w∈Wi

− log Pr
Υ
(w|W<i,Φ(x))

whereW<i is the set of already predicted words up to a timestamp i andWi is the set

of words left to predict. According to experiments by Song and Raghunathan [SR20],

MSP outperforms MLC.

6.4.2 Experimental evaluation

We have contacted Song and Raghunathan [SR20] and obtained a prototype code

they used to run the attack.3 The model Υ is implemented as a one-layer LSTM

with 300 hidden units. The model is trained for 30 epochs with Adam optimizer

[KB14], learning rate of 10−3 and batch size of 256. The actual implementation uses

TensorFlow [Aba+16] (version 1) and is naturally optimized for GPU training.

We run two sets of experiments corresponding to two adversarial settings. First,

similar to the work of Song and Raghunathan [SR20], we assume that the adver-

sary has a black-box access to the embedding model Φ and can use it to train Υ,

and we call this experiment a public model. This setting corresponds to a scenario

when the system uses some open embedding model with little to no alterations (i.e.,

Google AI Platform Training4). Second, we assume a more realistic scenario where

the embedding model Φ is not available, and the adversary can only use the system
3https://github.com/google/embedding-tests
4https://cloud.google.com/ai-platform/training/docs/algorithms/bert

https://github.com/google/embedding-tests
https://cloud.google.com/ai-platform/training/docs/algorithms/bert

115

as a whole. That is, for a given document x, the adversary can only produce the

encrypted embedding Enc (Φ(x)). We call this experiment a private model. In both

experiments the actual outsourced database is encrypted and the difference is in the

dataset Daux on which the adversary can train the attack model Υ. In the public

model experiment, the adversary trains on plaintext embeddings while in the private

model environment she trains on the already encrypted embeddings.

We have used two datasets for both experiments. The first dataset is a BookCor-

pus [Zhu+15] that Song and Raghunathan [SR20] used. With this dataset we have

been able to verify that our adapted attack implementation produces similar results

to original [SR20]. The second dataset is the TREC 2020, same as in Section 6.3.

With this dataset we can link together the search accuracy and attack efficiency for

the same levels of security.

Attack efficiency metrics

In line with the work of Song and Raghunathan [SR20], we define the attack efficiency

metrics similar to a generic ML measurers of accuracy — precision, recall and F1 score.

Precision in our setting is defined as the number of words that the model predicted and

that are part of an embedded sentence (i.e., true positives) over the total number of

predicted words (all positives). Recall is defined as the number of correctly predicted

words (true positives) over the number of all words in the sentence (true positives

plus false negatives). F1 score is then the harmonic mean of these two:

F1 = 2 · precision · recall
precision+ recall

We go a step further in this direction and given the context of the model —

recovering a set of words from a sentence embedding — also track the fraction of

common words (a.k.a. stop-words) in the predicted set. BERT explicitly encourages

116

including the stop-words in the input because their relative position matters for the

context and thus embedding. However, the attack only produces an unordered set

of words and not their relative position. Therefore, the model prediction quality,

the F1 score, may seem high, but it may not imply high attack efficiency, because

a huge fraction of predicted words are common and thus contribute little to added

adversary knowledge. We define the list of stop words as pronouns, verb forms of

“be”, “have” and “do”, some modal verbs, compound forms (e.g., “you’ll”), negations,

articles, certain prepositions, conjunctions, adverbs and some more high-frequency

words.5 We also include punctuation and digits in the list, as BERT tokenizes these

along with the rest of the words.

Baselines

We have established two baselines between which the attack performance over en-

crypted inputs is assumed to lie. The first baseline is the attack on the plaintext

inputs (referred to as plaintext attack), a replica of the original attack by Song and

Raghunathan [SR20]. The second baseline is the attack on the random embeddings

(referred to as random attack), which, counterintuitively, does not produce close to

zero F1 score.

In both cases, we have trained the attack model for 30 epochs (see F1 score on

Figure 6·4). We note a number of observations: (i) we have replicated the efficiency

result of the black-box model inversion attack from [SR20, Table 2, F1 score, same

domain, LMSP, BERT], (ii) for the plaintext attack, the F1 score stops growing after

about 10th epoch, (iii) the random attack produces a far-from-negligible F1 score,

(iv) TREC dataset is much less susceptible to the attack than the originally used

BookCorpus.
5The list is adapted from the Snowball processing language: http://snowball.tartarus.org/

algorithms/english/stop.txt.

http://snowball.tartarus.org/algorithms/english/stop.txt
http://snowball.tartarus.org/algorithms/english/stop.txt

117

Figure 6·4: Inversion attack F1 score for different epochs and for the BookCorpus and
TREC datasets.

On this latter observation, we speculate that the reason is in the size of the input

document, and to the lesser extent different embedding mechanism. BookCorpus

input document, as used in [SR20], is merely a sentence, while TREC document is

a larger paragraph. We have tuned the maximum token sequence length (shorter

sequences are padded, larger ones are truncated), but it yielded no improvement.

From a purely combinatorial perspective, we conclude that the larger input loses

more information while being embedded in the same-sized vector.

The case of a random attack is puzzling, as one would expect that there is no

information to recover from an a-priori information-less (random) inputs. We have

dived deeper than F1 score and inspected the actual words that the attack recovered

118

and observed that almost all of them are stop-words and punctuation. That is, the

attack merely established that the input document contained a period, coma, “the”

and “a”, and it happened to be right some of the time. While such inversion technically

results in an F1 score as high as about 22%, it does not necessarily translate into an

information leakage or a privacy violation. We therefore include an evaluation of the

recovered words as part of our larger analysis.

We have run all experiments for both BookCorpus and TREC datasets, and we

have noticed that although the absolute values of attack efficiency are higher for Book-

Corpus, all relations and correlations are the same for both datasets. We therefore

report on the more relevant TREC dataset in the rest of the chapter.

Public model

For the public model setting we have used the trained model Υ from the baseline

experiments and ran it against the encrypted embeddings. That is, for all documents

x in Daux, we recovered a set of words from the encrypted embeddings Υ(Enc (Φ(x)))

and compared it to the set of words in the original documentW(x). We have repeated

the process for different values of β ∈ {1.0, . . . , 50.0}, see Figure 6·5.

We observe that even for β = 0, the attack efficiency drops sharply compared to

the plaintext baseline. We also see that the metric values drop further as β increases,

starting slowly for small β, then accelerating for β 10 to 30 and then slowing down

again. Interestingly, we observe that the attack efficiency dives below the lower base-

line, the random embeddings. We conclude that β ≈ 27, which is about 2.5 times the

maximum length of the input vectors, produces the security equivalent to symmetric

encryption. Finally, we note that the fraction of stop-words grows fast as the security

increases.

119

Figure 6·5: Inversion attack precision, recall, F1 score and percentage of non-stop-
words among recovered words for plaintext attack (dashed), random attack (dotted)
and different values of β (solid) for the TREC dataset. Horizontal bars depict the
baselines.

Private model

For the private model experiments, we have trained the model Υ on the already

encrypted embeddings for 30 epochs. That is, the model Υ is trained on (Enc (Φ(x)),

W(x)) pairs from the training dataset and then we run predictions for the encrypted

auxillary embeddings, similar to public model. The training and validation datasets

are encrypted with the same set of public and private parameters (i.e., same key k, s

and β).

To produce the datasets, we have chosen β values of 0.0,
⌈√

maxN
⌉
, maxN

and 2 · maxN (for maxN ≈ 11 being the longest input length), as well as random

120

Dataset (encrypted with β) Precision Recall F1 score Non-stop-words

β = 0 41.59% 23.36% 29.91% 3.67%

β =
⌈√

maxN
⌉
= 4 41.91% 23.75% 30.32% 4.96%

β ≈ maxN = 11 40.82% 24.20% 30.39% 5.18%
β ≈ 2 ·maxN = 22 40.44% 23.75% 29.92% 5.76%

Random embeddings 35.91% 26.49% 30.49% 0%

Table 6.2: Black-box inversion attack performance for the private model experiments.
The attack model Υ is both trained and validated on the specified datasets.

embeddings, see Table 6.2. We immediately notice that the attack model accuracy

metrics are similar among all five datasets, with the metrics for encrypted and random

embeddings being almost equal. This result implies that for the case of private model

— when the adversary has only black-box access to the system as a whole — the

protection by the DCPE is absolute.

6.5 Search accuracy against security tradeoff

Equipped with the empirical data from k-anon experiments on search accuracy and

attack efficiency, we can correlate these values with the security parameter, the ap-

proximation term β.

We note that the search accuracy degrades faster than attack efficiency, which

implies that there is a tradeoff between functionality and security. Depending on the

accuracy loss that the application can tolerate, the plot on Figure 6·6 can tell what

level of protection against the inversion attack would be at that search accuracy. This

plot also demonstrates the levels of accuracy and security for the β as a derivative of

the dataset, in particular, the length of the longest vector embedding maxN .

We observe that at β =
√
maxN , the search accuracy corresponds to a plaintext

dataset and the attack efficiency has dropped significantly compared to the plaintext

121

Figure 6·6: The correlation of search accuracy (the recall@1000) and the attack effi-
ciency (the F1 score and the percent of non-stop-words) with the approximation term
β. The vertical bars show special values of β:

√
maxN , maxN and 2 · maxN for

maxN ≈ 11 being the length of the longest vector in the dataset.

version. We also see that at β = maxN both search accuracy and attack efficiency

drop insubstantially compared to β =
√
maxN . Finally, we note that at β = 2 ·

maxN , although both measures drop significantly, after that point the accuracy goes

down much faster, which implies that increasing β beyond twice the longest vector

size is pessimal. This value of β is also close to a point where the attack F1 score

intercepts the F1 score of a random embedding attack, which further confirms that

this value of β is optimal.

Given the significant drop of attack efficiency for smaller β while retaining almost

optimal search accuracy, we conclude that k-anon (applying a Distance Comparison

Preserving Encryption to an embedding to protect kNN queries) is efficient. k-anon

122

developed is also highly tuneable, with β corresponding to the application-specific

accuracy and security requirements. Finally, the construction is cheap in terms of

performance and functionality — the encryption of inputs is very fast and is done

only once as a preprocessing step, and the existing algorithms work naturally over

the encrypted data.

6.6 Conclusions

In this work, we developed and analyzed k-anon, a system that answers kNN queries

securely in an outsourced setting. We adapted a DCPE scheme, ran experiments on

search accuracy and inversion attack efficiency over encrypted inputs. We analyzed

the correlation between the accuracy and security, and concluded that the approach

provides meaningful and tunable security and attack resiliency guarantees for a com-

paratively small penalty in search accuracy.

Future Work

An immediate deeper analysis of inversion attack over encrypted embeddings may

include an evaluation of the words that the attack model returns beyond simple

matching against the set of stop-words. It is reasonable to assume that with stronger

encryption the quality of the predicted words may degrade, where the quality may be

defined as the frequency of a word in the vocabulary, for example.

Another direction can be running other attacks against the embedding, beyond

the inversion attack. These may be some of the Song and Raghunathan [SR20] attacks

or adaptations of lots of general attacks against ML models, like membership attacks

[SSSS17; YMMS21].

Finally, the DCPE adapted from [FGHO21] preserves Euclidean distance. It would

be interesting to explore which results the inner-product distance comparison preserv-

ing encryption would produce.

123

Chapter 7

Conclusions and Future Work

In this thesis, we covered the concept of an outsourced database system and two

types of adversaries — snapshot and persistent — that have different capabilities on

an untrusted server. We focused on three query types — point, range and k-nearest-

neighbor — and we have gone over the many works that propose systems that execute

the relevant query types in a presence of an adversary. For the case of range queries

in a snapshot adversary model, we provided an in-depth theoretical and practical

analysis, an evaluation framework, a benchmark methodology, and its application

to five OPE / ORE schemes and five secure range query protocols. For the case of

point and range queries in a persistent adversary model, we offered an efficient and

secure query mechanism, Epsolute, along with a novel definition of security, based

on Differential Privacy. For the case of k-nearest-neighbor queries in a snapshot

adversary model, we offered a similarity search protocol, k-anon, and the analysis of

its search accuracy and susceptibility to certain inversion attacks.

The key take-away and future research directions that this thesis highlights are

fourfold.

Practicality and reproducibility

First and foremost, future research in the area of secure outsourced database systems

should focus more prominently on practicality and reproducibility. After analyzing a

plethora of works in the literature (see [BKR19; Bog+21]) we discovered that a large

124

fraction of constructions either do not have experiments, or their code is unavailable or

otherwise not suitable for inspection, or the experimental results are not reproducible.

We firmly believe in the reproducibility mission (such as SIGMOD1 and pVLDB2

efforts) and we encourage the works in the area to join the initiative.3

Practicality of property-preserving encryption

Second, our works [BKR19; BKOZ22] demonstrate the practical value of property-

preserving encryption as a component of a secure database system. While an ar-

gument can be made that a property-preserving encryption is inherently less-than-

ideally secure from a purely cryptographic perspective, we counter that its value is

much greater in a practical outsourced database system, which may not necessarily

require perfect secrecy. A construction using such encryption scheme can be practical

as long as the scheme’s performance is measured, its leakage is quantified and the

effect of this leakage on the security of the entire system is properly analyzed.

Practicality of using “heavy” primitives and protocols

Third, as our work, Epsolute, demonstrates, the primitives and protocols that are

(rightly) considered heavyweight, such as ORAM and DP-sanitizers, can still be used

efficiently in an outsourced system. In Epsolute, we show that a clever parallelization

and optimization on both macro and micro levels can result in a very fast system

overall.4 We encourage practitioners to revisit using “heavy” primitives and protocols,

such as ORAM, homomorphic encryption, garbled circuits, zero-knowledge proofs, in

their systems.
1https://reproducibility.sigmod.org
2https://vldb.org/pvldb/reproducibility/
3We note that our work [BKR19] has received “Most Reproducible Paper” award.
4We have independently explored running Epsolute in a Trusted Execution Environment, and we

have observed even higher performance.

https://reproducibility.sigmod.org
https://vldb.org/pvldb/reproducibility/

125

More query types

Finally, while we have covered three query types for a secure outsourced database

system, we need more types to build a full-featured database that can compete with

existing mainstream RDBMS like PostgreSQL. The directions include JOIN, GROUP

BY, AGGREGATE queries and custom predicates.

126

Appendix A

Abstract of [BCET21]

In permissioned blockchain systems, participants are admitted to the network by

receiving a credential from a certification authority. Each transaction processed by

the network is required to be authorized by a valid participant who authenticates

via her credential. Use case settings where privacy is a concern thus require proper

privacy-preserving authentication and authorization mechanisms.

Anonymous credential schemes allow a user to authenticate while showing only

those attributes necessary in a given setting. This makes them a great tool for autho-

rizing transactions in permissioned blockchain systems based on the user’s attributes.

In most setups, there is one distinct certification authority for each organization in

the network. Consequently, the use of plain anonymous credential schemes still leaks

the association of a user to the organization that issued her credentials. Camenisch,

Drijvers and Dubovitskaya [CDD17] therefore suggest the use of a delegatable anony-

mous credential scheme to also hide that remaining piece of information.

In this paper, we propose the revocation and auditability — two functionalities

that are necessary for real-world adoption — and integrate them into the scheme. We

present a complete protocol, its security definition and the proof, and provide its open-

source implementation. Our distributed-setting performance measurements show that

the integration of the scheme with Hyperledger Fabric [And+18], while incurring

an overhead in comparison to the less privacy-preserving solutions, is practical for

settings with stringent privacy requirements.

127

Appendix B

Abstract of [NBK19]

Motivation: The complexity of protein-protein interactions (PPIs) is further com-

pounded by the fact that an average protein consists of two or more domains, struc-

turally and evolutionary independent subunits. Experimental studies have demon-

strated that an interaction between a pair of proteins is not carried out by all domains

constituting each protein, but rather by a select subset. However, finding which do-

mains from each protein mediate the corresponding PPI is a challenging task.

Results: Here, we present Domain Interaction Statistical POTential (DISPOT), a

simple knowledge-based statistical potential that estimates the propensity of an in-

teraction between a pair of protein domains, given their SCOP family annotations.

The statistical potential is derived based on the analysis of more than 352 000 struc-

turally resolved protein-protein interactions obtained from DOMMINO, a compre-

hensive database on structurally resolved macromolecular interactions.

Availability and implementation: DISPOT is implemented in Python 2.7 and

packaged as an open-source tool. DISPOT is implemented in two modes, basic

and auto-extraction. The source code for both modes is available on GitHub and

standalone docker images on DockerHub. The web-server is freely available at dis-

pot.korkinlab.org.

Contact: korkin@korkinlab.org or onarykov@wpi.edu

Supplementary information: Supplementary data are available at Bioinformatics

online.

https://github.com/korkinlab/dispot
https://hub.docker.com/r/korkinlab/dispot
http://dispot.korkinlab.org/
http://dispot.korkinlab.org/
korkin@korkinlab.org
onarykov@wpi.edu
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz587#supplementary-data

Bibliography

[NET18] .NET Foundation. Benchmark.NET. https://github.com/dotnet/
BenchmarkDotNet. 2018.

[Aba+16] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Mi-
chael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. “Tensor-
Flow: A System for Large-Scale Machine Learning”. In: Proceedings of
the 12th USENIX Conference on Operating Systems Design and Im-
plementation. OSDI’16. USENIX Association, 2016, pp. 265–283. doi:
10.5281/zenodo.4724125.

[AKSX04] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.
“Order Preserving Encryption for Numeric Data”. In: Proceedings of the
2004 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’04. Association for Computing Machinery, 2004, pp. 563–574.
doi: 10.1145/1007568.1007632.

[And+18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Fer-
ris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan,
Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith,
Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sha-
ron Weed Cocco, and Jason Yellick. “Hyperledger Fabric: A Distributed
Operating System for Permissioned Blockchains”. In: Proceedings of the
Thirteenth EuroSys Conference. EuroSys ’18. 2018, pp. 1–15. doi: 10.
1145/3190508.3190538.

[Ara+13] Arvind Arasu, Spyros Blanas, Ken Eguro, Manas Joglekar, Raghav
Kaushik, Donald Kossmann, Ravi Ramamurthy, Prasang Upadhyaya,
and Ramarathnam Venkatesan. “Secure Database-as-a-Service with Ci-
pherbase”. In: Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’13. Association for
Computing Machinery, 2013, pp. 1033–1036. doi: 10.1145/2463676.
2467797.

128

https://github.com/dotnet/BenchmarkDotNet
https://github.com/dotnet/BenchmarkDotNet
https://doi.org/10.5281/zenodo.4724125
https://doi.org/10.1145/1007568.1007632
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/2463676.2467797
https://doi.org/10.1145/2463676.2467797

129

[Arg03] Lars Arge. “The Buffer Tree: A Technique for Designing Batched Ex-
ternal Data Structures”. In: Algorithmica 37.1 (Sept. 2003), pp. 1–24.
doi: 10.1007/s00453-003-1021-x.

[Ary+98] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman,
and Angela Y. Wu. “An Optimal Algorithm for Approximate Nearest
Neighbor Searching Fixed Dimensions”. In: Journal of the ACM 45.6
(Nov. 1998), pp. 891–923. doi: 10.1145/293347.293348.

[Baj+16] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao,
Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra,
Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. MS MARCO: A Human Generated MAchine Reading
COmprehension Dataset. 2016. doi: 10.48550/ARXIV.1611.09268.

[BS13] Sumeet Bajaj and Radu Sion. “TrustedDB: A trusted hardware-based
database with privacy and data confidentiality”. In: IEEE Transactions
on Knowledge and Data Engineering 26.3 (2013), pp. 752–765. doi:
10.1109/TKDE.2013.38.

[BK15] Elaine Barker and John Kelsey. Recommendation for Random Number
Generation Using Deterministic Random Bit Generators. 2015. doi:
10.6028/NIST.SP.800-90Ar1.

[BK16] Elaine Barker and John Kelsey. Recommendation for Random Bit Gen-
erator (RBG) Constructions. 2016.

[Bat+17] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho,
and Jennie Rogers. “SMCQL: Secure Querying for Federated Databa-
ses”. In: Proceedings of the VLDB Endowment 10.6 (Feb. 2017), pp. 673–
684. doi: 10.14778/3055330.3055334.

[Bat+18] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jen-
nie Rogers. “Shrinkwrap: efficient sql query processing in differentially
private data federations”. In: Proceedings of the VLDB Endowment 12.3
(2018), pp. 307–320. doi: 10.14778/3291264.3291274.

[BM70] Rudolf Bayer and Edward M. McCreight. “Organization and Mainte-
nance of Large Ordered Indices”. In: Proceedings of the 1970 ACM SIG-
FIDET (Now SIGMOD) Workshop on Data Description, Access and
Control. SIGFIDET ’70. Association for Computing Machinery, 1970,
pp. 107–141. doi: 10.1145/1734663.1734671.

[BBKN14] Amos Beimel, Hai Brenner, Shiva Prasad Kasiviswanathan, and Kobbi
Nissim. “Bounds on the sample complexity for private learning and pri-
vate data release”. In: Machine learning 94.3 (2014), pp. 401–437. doi:
10.1007/s10994-013-5404-1.

https://doi.org/10.1007/s00453-003-1021-x
https://doi.org/10.1145/293347.293348
https://doi.org/10.48550/ARXIV.1611.09268
https://doi.org/10.1109/TKDE.2013.38
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.14778/3055330.3055334
https://doi.org/10.14778/3291264.3291274
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1007/s10994-013-5404-1

130

[BNS13] Amos Beimel, Kobbi Nissim, and Uri Stemmer. “Private learning and
sanitization: Pure vs. approximate differential privacy”. In: Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and
Techniques. Springer, 2013, pp. 363–378. doi: 10.1007/978-3-642-
40328-6_26.

[BNZ19] Amos Beimel, Kobbi Nissim, and Mohammad Zaheri. “Exploring Differ-
ential Obliviousness”. In: Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques (APPROX / RAN-
DOM 2019). Vol. 145. Leibniz International Proceedings in Informat-
ics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019,
65:1–65:20. doi: 10.4230/LIPIcs.APPROX-RANDOM.2019.65.

[BGRS99] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
“When Is “Nearest Neighbor” Meaningful?” In: The International Con-
ference on Database Theory — ICDT ’99. Springer Berlin Heidelberg,
1999, pp. 217–235. doi: 10.1007/3-540-49257-7_15.

[Bin+18] Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart,
and Vitaly Shmatikov. “The Tao of Inference in Privacy-Protected Da-
tabases”. In: PVLDB 11.11 (2018), pp. 1715–1728. doi: 10.14778/
3236187.3236217.

[BLR13] Avrim Blum, Katrina Ligett, and Aaron Roth. “A learning theory ap-
proach to non-interactive database privacy”. In: Journal of the ACM
(JACM) 60.2 (2013), pp. 1–25. doi: 10.1145/1374376.1374464.

[BPP17] Tobias Boelter, Rishabh Poddar, and Raluca Ada Popa. “A Secure
One-Roundtrip Index for Range Queries”. In: UCB/EECS-2017-7 (Apr.
2017). url: digitalassets.lib.berkeley.edu/techreports/ucb/
text/EECS-2017-7.pdf.

[Bog17] Dmytro Bogatov. “Analysis of a Dynamic Voluntary Contribution
Mechanism Public Good Game”. In: IPE Journal 26 (2017).

[BCET21] Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoui, and Björn
Tackmann. “Anonymous Transactions with Revocation and Auditing
in Hyperledger Fabric”. In: International Conference on Cryptology and
Network Security. Springer. 2021. doi: 10.1007/978-3-030-92548-
2_23.

[BH16] Dmytro Bogatov and Jillian Rose Hennessy. “Data MATTERS: Cus-
tomizing Economic Indices to Measure State Competitiveness”. In: WPI
Library (2016). url: digital.wpi.edu/concern/student_works/
b2773x39g.

https://doi.org/10.1007/978-3-642-40328-6_26
https://doi.org/10.1007/978-3-642-40328-6_26
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.65
https://doi.org/10.1007/3-540-49257-7_15
https://doi.org/10.14778/3236187.3236217
https://doi.org/10.14778/3236187.3236217
https://doi.org/10.1145/1374376.1374464
digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2017-7.pdf
digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2017-7.pdf
https://doi.org/10.1007/978-3-030-92548-2_23
https://doi.org/10.1007/978-3-030-92548-2_23
digital.wpi.edu/concern/student_works/b2773x39g
digital.wpi.edu/concern/student_works/b2773x39g

131

[Bog+21] Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim,
and Adam O’Neill. “Epsolute: Efficiently Querying Databases While
Providing Differential Privacy”. In: Proceedings of the 2021 ACM SIG-
SAC Conference on Computer and Communications Security — CCS
’2021. 2021. doi: 10.1145/3460120.3484786.

[BKOZ22] Dmytro Bogatov, George Kollios, Adam O’Neill, and Hamed Zamani.
“k-anon: Secure Similarity Search in Outsourced Databases”. Apr. 2022.

[BKR19] Dmytro Bogatov, George Kollios, and Leonid Reyzin. “A compara-
tive evaluation of order-revealing encryption schemes and secure range-
query protocols”. In: Proceedings of the VLDB Endowment 12.8 (2019),
pp. 933–947. doi: 10.14778/3324301.3324309.

[Bog21] Daria Bogatova. “Neurovascular Interface in Aging Zebrafish”. https:
/ / bogatova . org / assets / docs / neurovascular - interface - in -
aging-zebrafish-daria-bogatova-bachelor-thesis.pdf. Bache-
lor’s Thesis. Goethe University Frankfurt am Main, May 2021.

[BCLO09] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Ne-
ill. “Order-Preserving Symmetric Encryption”. In: Advances in Cryptol-
ogy - EUROCRYPT 2009. Springer Berlin Heidelberg, 2009, pp. 224–
241. doi: 10.1007/978-3-642-01001-9_13.

[BCO11] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. “Order-
Preserving Encryption Revisited: Improved Security Analysis and Alter-
native Solutions”. In: Advances in Cryptology – CRYPTO 2011. Sprin-
ger Berlin Heidelberg, 2011, pp. 578–595. doi: 10.1007/978-3-642-
22792-9_33.

[Bon+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry,
and Joe Zimmerman. “Semantically secure order-revealing encryption:
Multi-input functional encryption without obfuscation”. In: Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2015, pp. 563–594. doi: 10.1007/978-3-662-
46803-6_19.

[BNSV15] Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. “Differen-
tially private release and learning of threshold functions”. In: 2015 IEEE
56th Annual Symposium on Foundations of Computer Science. IEEE.
2015, pp. 634–649. doi: 10.1109/FOCS.2015.45.

[BZ16] Mark Bun and Mark Zhandry. “Order-Revealing Encryption and the
Hardness of Private Learning”. In: Theory of Cryptography. Springer
Berlin Heidelberg, 2016, pp. 176–206. doi: 10 . 1007 / 978 - 3 - 662 -
49096-9_8.

https://doi.org/10.1145/3460120.3484786
https://doi.org/10.14778/3324301.3324309
https://bogatova.org/assets/docs/neurovascular-interface-in-aging-zebrafish-daria-bogatova-bachelor-thesis.pdf
https://bogatova.org/assets/docs/neurovascular-interface-in-aging-zebrafish-daria-bogatova-bachelor-thesis.pdf
https://bogatova.org/assets/docs/neurovascular-interface-in-aging-zebrafish-daria-bogatova-bachelor-thesis.pdf
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1109/FOCS.2015.45
https://doi.org/10.1007/978-3-662-49096-9_8
https://doi.org/10.1007/978-3-662-49096-9_8

132

[Bur+05] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Greg Hullender. “Learning to Rank Using Gradient De-
scent”. In: Proceedings of the 22nd International Conference on Ma-
chine Learning. ICML ’05. Association for Computing Machinery, 2005,
pp. 89–96. doi: 10.1145/1102351.1102363.

[CDD17] Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. “Practical
UC-Secure Delegatable Credentials with Attributes and Their Applica-
tion to Blockchain”. In: Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security. CCS ’17. Association
for Computing Machinery, 2017, pp. 683–699. doi: 10.1145/3133956.
3134025.

[CGPR15] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. “Leak-
age-abuse attacks against searchable encryption”. In: Proceedings of the
22nd ACM SIGSAC conference on computer and communications secu-
rity. 2015, pp. 668–679. doi: 10.1145/2810103.2813700.

[Cas+14] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo
Krawczyk, Marcel-Cătălin Rosu, and Michael Steiner. “Dynamic Se-
archable Encryption in Very-Large Databases: Data Structures and Im-
plementation”. In: 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-26,
2014. 2014. doi: 10.14722/ndss.2014.23264.

[Cas+13] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Mar-
cel-Cătălin Roşu, and Michael Steiner. “Highly-Scalable Searchable Sym-
metric Encryption with Support for Boolean Queries”. In: Advances in
Cryptology – CRYPTO 2013. Springer Berlin Heidelberg, 2013, pp. 353–
373. doi: 10.1007/978-3-642-40041-4_20.

[Cas+18] David Cash, Feng-Hao Liu, Adam O’Neill, Mark Zhandry, and Cong
Zhang. “Parameter-hiding order revealing encryption”. In: International
Conference on the Theory and Application of Cryptology and Informa-
tion Security. Springer. 2018, pp. 181–210. doi: 10.1007/978-3-030-
03326-2_7.

[CCMS19] T-H. Hubert Chan, Kai-Min Chung, Bruce M. Maggs, and Elaine Shi.
“Foundations of Differentially Oblivious Algorithms”. In: Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms.
SODA ’19. Society for Industrial and Applied Mathematics, 2019.

[CXL16] Zhao Chang, Dong Xie, and Feifei Li. “Oblivious RAM: A dissection
and experimental evaluation”. In: Proceedings of the VLDB Endowment
9.12 (2016), pp. 1113–1124. doi: 10.14778/2994509.2994528.

https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1145/3133956.3134025
https://doi.org/10.1145/3133956.3134025
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.14722/ndss.2014.23264
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-030-03326-2_7
https://doi.org/10.1007/978-3-030-03326-2_7
https://doi.org/10.14778/2994509.2994528

133

[CLT16] Binyi Chen, Huijia Lin, and Stefano Tessaro. “Oblivious Parallel RAM:
Improved Efficiency and Generic Constructions”. In: Theory of Cryp-
tography. Ed. by Eyal Kushilevitz and Tal Malkin. Springer Berlin Hei-
delberg, 2016, pp. 205–234. doi: 10.1007/978-3-662-49099-0_8.

[CLWW16] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu.
“Practical Order-Revealing Encryption with Limited Leakage”. In: Re-
vised Selected Papers of the 23rd International Conference on Fast Soft-
ware Encryption - Volume 9783. FSE 2016. Springer-Verlag, 2016. doi:
10.1007/978-3-662-52993-5_24.

[Cra09] Nick Craswell. “Mean Reciprocal Rank”. In: Encyclopedia of Database
Systems. Boston, MA: Springer US, 2009, pp. 1703–1703. isbn: 978-0-
387-39940-9. doi: 10.1007/978-0-387-39940-9_488.

[Cui+20] Ningning Cui, Xiaochun Yang, Bin Wang, Jianxin Li, and Guoren Wang.
“SVkNN: Efficient Secure and Verifiable k-Nearest Neighbor Query on
the Cloud Platform*”. In: 2020 IEEE 36th International Conference on
Data Engineering (ICDE). 2020, pp. 253–264. doi: 10.1109/ICDE48307.
2020.00029.

[CD21] Pádraig Cunningham and Sarah Jane Delany. “K-Nearest Neighbour
Classifiers - A Tutorial”. In: ACM Computing Surveys 54.6 (July 2021).
doi: 10.1145/3459665.

[Dam64] Fred J. Damerau. “A Technique for Computer Detection and Correction
of Spelling Errors”. In: Communications of the ACM 7.3 (Mar. 1964),
pp. 171–176. doi: 10.1145/363958.363994.

[Dav19] Chair Mike Cowlishaw David G. Hough. “IEEE Standard for Floating-
Point Arithmetic”. In: IEEE Std 754-2019 (Revision of IEEE 754-2008)
(2019), pp. 1–84. doi: 10.1109/IEEESTD.2019.8766229.

[Dav16] Tom Woller David Kaplan Jeremy Powell. “AMD memory encryption”.
In: White Paper (2016). url: developer.amd.com/wordpress/media/
2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf.

[DPPS20] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papaman-
thou, and Saurabh Shintre. “SEAL: Attack Mitigation for Encrypted
Databases via Adjustable Leakage”. In: 29th USENIX Security Sym-
posium (USENIX Security 20). USENIX Association, 2020, pp. 2433–
2450. isbn: 978-1-939133-17-5.

[Dem+16] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, An-
tonios Deligiannakis, and Minos Garofalakis. “Practical private range
search revisited”. In: Proceedings of the 2016 International Conference
on Management of Data. 2016, pp. 185–198. doi: 10.1145/2882903.
2882911.

https://doi.org/10.1007/978-3-662-49099-0_8
https://doi.org/10.1007/978-3-662-52993-5_24
https://doi.org/10.1007/978-0-387-39940-9_488
https://doi.org/10.1109/ICDE48307.2020.00029
https://doi.org/10.1109/ICDE48307.2020.00029
https://doi.org/10.1145/3459665
https://doi.org/10.1145/363958.363994
https://doi.org/10.1109/IEEESTD.2019.8766229
developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://doi.org/10.1145/2882903.2882911
https://doi.org/10.1145/2882903.2882911

134

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). As-
sociation for Computational Linguistics, June 2019, pp. 4171–4186. doi:
10.18653/v1/N19-1423.

[DDC16] F. Betül Durak, Thomas M. DuBuisson, and David Cash. “What Else is
Revealed by Order-Revealing Encryption?” In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
CCS ’16. Association for Computing Machinery, 2016, pp. 1155–1166.
doi: 10.1145/2976749.2978379.

[Dwo+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Miro-
nov, and Moni Naor. “Our data, ourselves: Privacy via distributed noise
generation”. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer. 2006, pp. 486–503.
doi: 10.1007/11761679_29.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. “Cal-
ibrating noise to sensitivity in private data analysis”. In: Theory of
cryptography conference. Springer. 2006, pp. 265–284. doi: 10.1007/
11681878_14.

[DNPR10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum.
“Differential privacy under continual observation”. In: Proceedings of
the forty-second ACM symposium on Theory of computing. 2010. doi:
10.1145/1806689.1806787.

[Dwo01] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
Methods and Techniques. 2001. doi: 10.6028/NIST.SP.800-38A.

[Dwo07] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. 2007. doi: 10.6028/NIST.
SP.800-38D.

[Dwo+01] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence
Bassham, E. Roback, and James Dray. Advanced Encryption Standard
(AES). en. 2001. doi: 10.6028/NIST.FIPS.197.

[ESJ14] Yousef Elmehdwi, Bharath K. Samanthula, and Wei Jiang. “Secure
k-nearest neighbor query over encrypted data in outsourced environ-
ments”. In: 2014 IEEE 30th International Conference on Data Engi-
neering. 2014, pp. 664–675. doi: 10.1109/ICDE.2014.6816690.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/2976749.2978379
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1806689.1806787
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1109/ICDE.2014.6816690

135

[EWSG04] Yuval Elovici, Ronen Waisenberg, Erez Shmueli, and Ehud Gudes. “A
Structure Preserving Database Encryption Scheme”. In: Secure Data
Management. Springer Berlin Heidelberg, 2004, pp. 28–40. doi: 10.
1007/978-3-540-30073-1_3.

[ELL18] Jieun Eom, Dong Hoon Lee, and Kwangsu Lee. “Multi-Client Order-
Revealing Encryption”. In: IEEE Access 6 (2018), pp. 45458–45472. doi:
10.1109/ACCESS.2018.2864991.

[EZ19] Saba Eskandarian and Matei Zaharia. “ObliDB: Oblivious query pro-
cessing for secure databases”. In: Proceedings of the VLDB Endowment
13.2 (2019), pp. 169–183. doi: 10.14778/3364324.3364331.

[FGHO21] Georg Fuchsbauer, Riddhi Ghosal, Nathan Hauke, and Adam O’Neill.
Approximate Distance-Comparison-Preserving Symmetric Encryption.
Cryptology ePrint Archive, Report 2021/1666. https://ia.cr/2021/
1666. 2021.

[Fuh+17] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Flo-
rian Kerschbaum, and Ahmad-Reza Sadeghi. “HardIDX: Practical and
secure index with SGX”. In: IFIP Annual Conference on Data and
Applications Security and Privacy. Springer. 2017, pp. 386–408. doi:
10.1007/978-3-319-61176-1_22.

[Gen10] Craig Gentry. “Computing arbitrary functions of encrypted data”. In:
Communications of the ACM 53.3 (2010), pp. 97–105. doi: 10.1145/
1666420.1666444.

[Ghi+08] Gabriel Ghinita, Panos Kalnis, Ali Khoshgozaran, Cyrus Shahabi, and
Kian-Lee Tan. “Private Queries in Location Based Services: Anonymiz-
ers Are Not Necessary”. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’08. As-
sociation for Computing Machinery, 2008, pp. 121–132. doi: 10.1145/
1376616.1376631.

[Gol87] Oded Goldreich. “Towards a theory of software protection and simula-
tion by oblivious RAMs”. In: Proceedings of the nineteenth annual ACM
symposium on Theory of computing. 1987, pp. 182–194. doi: 10.1145/
28395.28416.

[GO96] Oded Goldreich and Rafail Ostrovsky. “Software protection and simula-
tion on oblivious RAMs”. In: Journal of the ACM (JACM) 43.3 (1996),
pp. 431–473. doi: 10.1145/233551.233553.

[GLMP18] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G.
Paterson. “Pump up the volume: Practical database reconstruction from
volume leakage on range queries”. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 2018,
pp. 315–331. doi: 10.1145/3243734.3243864.

https://doi.org/10.1007/978-3-540-30073-1_3
https://doi.org/10.1007/978-3-540-30073-1_3
https://doi.org/10.1109/ACCESS.2018.2864991
https://doi.org/10.14778/3364324.3364331
https://ia.cr/2021/1666
https://ia.cr/2021/1666
https://doi.org/10.1007/978-3-319-61176-1_22
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1145/1376616.1376631
https://doi.org/10.1145/1376616.1376631
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/3243734.3243864

136

[GRS17] Paul Grubbs, Thomas Ristenpart, and Vitaly Shmatikov. “Why Your
Encrypted Database Is Not Secure”. In: Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems. ACM, 2017, pp. 162–168.
doi: 10.1145/3102980.3103007.

[Gru+17] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Na-
veed, and Thomas Ristenpart. “Leakage-Abuse Attacks against Order-
Revealing Encryption”. In: 2017 IEEE Symposium on Security and Pri-
vacy (SP). 2017, pp. 655–672. doi: 10.1109/SP.2017.44.

[GJW19] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. “Encrypted data-
bases: New volume attacks against range queries”. In: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 2019, pp. 361–378. doi: 10.1145/3319535.3363210.

[Haa+17] Helene Haagh, Yue Ji, Chenxing Li, Claudio Orlandi, and Yifan Song.
“Revealing Encryption for Partial Ordering”. In: Cryptography and Cod-
ing. Springer International Publishing, 2017, pp. 3–22. doi: 10.1007/
978-3-319-71045-7_1.

[HILM02] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. “Execut-
ing SQL over Encrypted Data in the Database-Service-Provider Model”.
In: Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’02. New York, NY, USA, 2002,
pp. 216–227. doi: 10.1145/564691.564717.

[HRMS10] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. “Boost-
ing the Accuracy of Differentially Private Histograms through Consis-
tency”. In: Proceedings of the VLDB Endowment 3.1–2 (Sept. 2010),
pp. 1021–1032. doi: 10.14778/1920841.1920970.

[HR10] Viet Tung Hoang and Phillip Rogaway. “On Generalized Feistel Net-
works”. In: Proceedings of the 30th Annual Conference on Advances in
Cryptology. CRYPTO’10. Springer-Verlag, 2010, pp. 613–630.

[Hof+21] Sebastian Hofstätter, Bhaskar Mitra, Hamed Zamani, Nick Craswell,
and Allan Hanbury. “Intra-Document Cascading: Learning to Select
Passages for Neural Document Ranking”. In: Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in
Information Retrieval. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 1349–1358. doi: 10.1145/3404835.3462889.

[HMCK12] Bijit Hore, Sharad Mehrotra, Mustafa Canim, and Murat Kantarcioglu.
“Secure multidimensional range queries over outsourced data”. In: VLDB
Journal 21.3 (2012), pp. 333–358. doi: 10.1007/s00778-011-0245-7.

[Hou04] Russ Housley. Using Advanced Encryption Standard (AES) Counter
Mode With IPsec Encapsulating Security Payload (ESP). RFC 3686.
Jan. 2004. url: https://tools.ietf.org/html/rfc3686.

https://doi.org/10.1145/3102980.3103007
https://doi.org/10.1109/SP.2017.44
https://doi.org/10.1145/3319535.3363210
https://doi.org/10.1007/978-3-319-71045-7_1
https://doi.org/10.1007/978-3-319-71045-7_1
https://doi.org/10.1145/564691.564717
https://doi.org/10.14778/1920841.1920970
https://doi.org/10.1145/3404835.3462889
https://doi.org/10.1007/s00778-011-0245-7
https://tools.ietf.org/html/rfc3686

137

[Hsu+14] Justin Hsu, Marco Gaboardi, Andreas Haeberlen, Sanjeev Khanna, Ar-
jun Narayan, Benjamin C Pierce, and Aaron Roth. “Differential privacy:
An economic method for choosing epsilon”. In: 2014 IEEE 27th Com-
puter Security Foundations Symposium. IEEE. 2014, pp. 398–410. doi:
10.1109/CSF.2014.35.

[HXRC11] Haibo Hu, Jianliang Xu, Chushi Ren, and Byron Choi. “Processing
private queries over untrusted data cloud through privacy homomor-
phism”. In: 2011 IEEE 27th International Conference on Data Engi-
neering. 2011, pp. 601–612. doi: 10.1109/ICDE.2011.5767862.

[HH19] Walt Hubis and Eric Hibbard. “IEEE Standard for Cryptographic Pro-
tection of Data on Block-Oriented Storage Devices”. In: IEEE Std 1619-
2018 (Revision of IEEE Std 1619-2007) (2019), pp. 1–41. doi: 10.1109/
IEEESTD.2019.8637988.

[IM98] Piotr Indyk and Rajeev Motwani. “Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality”. In: Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing. STOC
’98. Association for Computing Machinery, 1998, pp. 604–613. doi: 10.
1145/276698.276876.

[IKLO16] Yuval Ishai, Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. “Pri-
vate large-scale databases with distributed searchable symmetric en-
cryption”. In: Cryptographers’ Track at the RSA Conference. Springer.
2016, pp. 90–107. doi: 10.1007/978-3-319-29485-8_6.

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. “Ac-
cess Pattern disclosure on Searchable Encryption: Ramification, Attack
and Mitigation”. In: 19th Annual Network and Distributed System Se-
curity Symposium, NDSS 2012, San Diego, California, USA, February
5-8, 2012. The Internet Society, 2012.

[IKK14] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. “In-
ference attack against encrypted range queries on outsourced databa-
ses”. In: Proceedings of the 4th ACM conference on Data and applica-
tion security and privacy. 2014, pp. 235–246. doi: 10.1145/2557547.
2557561.

[JS11] Tibor Jager and Juraj Somorovsky. “How to Break XML Encryption”.
In: Proceedings of the 18th ACM Conference on Computer and Com-
munications Security. CCS ’11. Association for Computing Machinery,
2011, pp. 413–422. doi: 10.1145/2046707.2046756.

[Jan95] Jan Jannink. “Implementing Deletion in B+-Trees”. In: ACM SIGMOD
Record 24.1 (Mar. 1995), pp. 33–38. doi: 10.1145/202660.202666.

https://doi.org/10.1109/CSF.2014.35
https://doi.org/10.1109/ICDE.2011.5767862
https://doi.org/10.1109/IEEESTD.2019.8637988
https://doi.org/10.1109/IEEESTD.2019.8637988
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1145/2557547.2557561
https://doi.org/10.1145/2557547.2557561
https://doi.org/10.1145/2046707.2046756
https://doi.org/10.1145/202660.202666

138

[JK02] Kalervo Järvelin and Jaana Kekäläinen. “Cumulated Gain-Based Evalu-
ation of IR Techniques”. In: ACM Transactions on Information Systems
20.4 (Oct. 2002), pp. 422–446. issn: 1046-8188. doi: 10.1145/582415.
582418.

[JDJ21] Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-Scale Similar-
ity Search with GPUs”. In: IEEE Transactions on Big Data 7.3 (2021),
pp. 535–547. doi: 10.1109/TBDATA.2019.2921572.

[JPS21] Mireya Jurado, Catuscia Palamidessi, and Geoffrey Smith. “A Formal
Information-Theoretic Leakage Analysis of Order-Revealing Encryp-
tion”. In: 2021 IEEE 34th Computer Security Foundations Symposium
(CSF). 2021, pp. 1–16. doi: 10.1109/CSF51468.2021.00046.

[KS88] Voratas Kachitvichyanukul and Bruce W. Schmeiser. “Algorithm 668:
H2PEC: Sampling from the Hypergeometric Distribution”. In: ACM
Transactions on Mathematical Software 14.4 (Dec. 1988), pp. 397–398.
doi: 10.1145/50063.214387.

[KAK10] Hasan Kadhem, Toshiyuki Amagasa, and Hiroyuki Kitagawa. “MV-
OPES: Multivalued-Order Preserving Encryption Scheme: Novel Sche-
me for Encrypting Integer Value to Many Different Values”. In: IEICE
Transactions on Information and Systems E93.D.9 (2010), pp. 2520–
2533. doi: 10.1587/transinf.E93.D.2520.

[KAK13] Hasan Kadhem, Toshiyuki Amagasa, and Hiroyuki Kitagawa. “Opti-
mization Techniques for Range Queries in the Multivalued-partial Order
Preserving Encryption Scheme”. In: Knowledge Discovery, Knowledge
Engineering and Knowledge Management. Springer Berlin Heidelberg,
2013, pp. 338–353. doi: 10.1007/978-3-642-29764-9_23.

[Kap+20] Haim Kaplan, Katrina Ligett, Yishay Mansour, Moni Naor, and Uri
Stemmer. “Privately Learning Thresholds: Closing Exponential Gap”.
In: Proceedings of Thirty Third Conference on Learning Theory. Pro-
ceedings of Machine Learning Research. PMLR, 2020, pp. 2263–2285.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy. Second. Chapman & Hall/CRC, 2014. isbn: 9781466570269.

[KKNO16] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill.
“Generic attacks on secure outsourced databases”. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 2016, pp. 1329–1340. doi: 10.1145/2976749.2978386.

[Ker15] Florian Kerschbaum. “Frequency-Hiding Order-Preserving Encryption”.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. CCS ’15. Association for Computing Machin-
ery, 2015, pp. 656–667. doi: 10.1145/2810103.2813629.

https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/CSF51468.2021.00046
https://doi.org/10.1145/50063.214387
https://doi.org/10.1587/transinf.E93.D.2520
https://doi.org/10.1007/978-3-642-29764-9_23
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1145/2810103.2813629

139

[KS14] Florian Kerschbaum and Axel Schroepfer. “Optimal Average-Complex-
ity Ideal-Security Order-Preserving Encryption”. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Se-
curity. CCS ’14. Association for Computing Machinery, 2014, pp. 275–
286. doi: 10.1145/2660267.2660277.

[KT19] Florian Kerschbaum and Anselme Tueno. “An Efficiently Searchable
Encrypted Data Structure for Range Queries”. In: Computer Security –
ESORICS 2019. Springer International Publishing, 2019, pp. 344–364.
doi: 10.1007/978-3-030-29962-0_17.

[KSS13] Ali Khoshgozaran, Houtan Shirani-Mehr, and Cyrus Shahabi. “Blind
Evaluation of Location Based Queries Using Space Transformation to
Preserve Location Privacy”. In: Geoinformatica 17.4 (Oct. 2013), pp. 599–
634. doi: 10.1007/s10707-012-0172-9.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Tho-
mas Zacharias. “Delegatable Pseudorandom Functions and Applications”.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security. CCS ’13. Association for Computing Machin-
ery, 2013, pp. 669–684. doi: 10.1145/2508859.2516668.

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2014. doi: 10.48550/ARXIV.1412.6980.

[Knu16] Donald Ervin Knuth. Seminumerical algorithms. 3rd ed. Vol. 2. Addi-
son-Wesley, 2016, pp. 145–146.

[Koc+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. “Spectre Attacks: Ex-
ploiting Speculative Execution”. In: 2019 IEEE Symposium on Security
and Privacy (SP). 2019, pp. 1–19. doi: 10.1109/SP.2019.00002.

[KPT20] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto
Tamassia. “The state of the uniform: attacks on encrypted databases
beyond the uniform query distribution”. In: 2020 IEEE Symposium on
Security and Privacy (SP). IEEE. 2020, pp. 1223–1240. doi: 10.1109/
SP40000.2020.00029.

[LMP18] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. “Im-
proved reconstruction attacks on encrypted data using range query leak-
age”. In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE.
2018, pp. 297–314. doi: 10.1109/SP.2018.00002.

[LN18] Kasper Green Larsen and Jesper Buus Nielsen. “Yes, There is an Obliv-
ious RAM Lower Bound!” In: Advances in Cryptology – CRYPTO 2018.
Springer International Publishing, 2018, pp. 523–542. doi: 10.1007/
978-3-319-96881-0_18.

https://doi.org/10.1145/2660267.2660277
https://doi.org/10.1007/978-3-030-29962-0_17
https://doi.org/10.1007/s10707-012-0172-9
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP40000.2020.00029
https://doi.org/10.1109/SP40000.2020.00029
https://doi.org/10.1109/SP.2018.00002
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/978-3-319-96881-0_18

140

[LSY20] Kasper Green Larsen, Mark Simkin, and Kevin Yeo. “Lower Bounds for
Multi-server Oblivious RAMs”. In: Theory of Cryptography. Springer
International Publishing, 2020, pp. 486–503. doi: 10.1007/978- 3-
030-64375-1_17.

[LLLT19] Xinyu Lei, Alex X. Liu, Rui Li, and Guan-Hua Tu. “SecEQP: A Secure
and Efficient Scheme for SkNN Query Problem Over Encrypted Geo-
data on Cloud”. In: 2019 IEEE 35th International Conference on Data
Engineering (ICDE). 2019, pp. 662–673. doi: 10.1109/ICDE.2019.
00065.

[Lev66] Vladimir Iosifovich Levenshtein. “Binary codes capable of correcting
deletions, insertions and reversals.” In: Soviet Physics Doklady 10.8
(Feb. 1966), pp. 707–710.

[LW16] Kevin Lewi and David J Wu. “Order-revealing encryption: New con-
structions, applications, and lower bounds”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
2016, pp. 1167–1178. doi: 10.1145/2976749.2978376.

[LSP15] Frank Li, Richard Shin, and Vern Paxson. “Exploring Privacy Preserva-
tion in Outsourced K-Nearest Neighbors with Multiple Data Owners”.
In: Proceedings of the 2015 ACM Workshop on Cloud Computing Secu-
rity Workshop. CCSW ’15. Association for Computing Machinery, 2015,
pp. 53–64. doi: 10.1145/2808425.2808430.

[LWZ19] Yuan Li, Hongbing Wang, and Yunlei Zhao. “Delegatable Order-Re-
vealing Encryption”. In: Proceedings of the 2019 ACM Asia Conference
on Computer and Communications Security. Asia CCS ’19. Association
for Computing Machinery, 2019, pp. 134–147. doi: 10.1145/3321705.
3329829.

[LWHZ21] Yuan Li, Xing-Chen Wang, Lin Huang, and Yun-Lei Zhao. “Order-
Revealing Encryption: File-Injection Attack and Forward Security”. In:
Journal of Computer Science and Technology 36.4 (Aug. 2021), pp. 877–
895. doi: 10.1007/s11390-020-0060-y.

[LW12] Dongxi Liu and Shenlu Wang. “Programmable Order-Preserving Se-
cure Index for Encrypted Database Query”. In: 2012 IEEE Fifth In-
ternational Conference on Cloud Computing. 2012, pp. 502–509. doi:
10.1109/CLOUD.2012.65.

[LW13] Dongxi Liu and Shenlu Wang. “Nonlinear order preserving index for en-
crypted database query in service cloud environments”. In: Concurrency
and Computation: Practice and Experience (2013), pp. 1967–1984. doi:
10.1002/cpe.2992.

https://doi.org/10.1007/978-3-030-64375-1_17
https://doi.org/10.1007/978-3-030-64375-1_17
https://doi.org/10.1109/ICDE.2019.00065
https://doi.org/10.1109/ICDE.2019.00065
https://doi.org/10.1145/2976749.2978376
https://doi.org/10.1145/2808425.2808430
https://doi.org/10.1145/3321705.3329829
https://doi.org/10.1145/3321705.3329829
https://doi.org/10.1007/s11390-020-0060-y
https://doi.org/10.1109/CLOUD.2012.65
https://doi.org/10.1002/cpe.2992

141

[LCZ17] Zhe Liu, Kim-Kwang Raymond Choo, and Minghao Zhao. “Practical-
oriented protocols for privacy-preserving outsourced big data analysis:
Challenges and future research directions”. In: Computers & Security
69 (2017), pp. 97–113. doi: 10.1016/j.cose.2016.12.006.

[Lv+21] Chunyang Lv, Jianfeng Wang, Shi-Feng Sun, Yunling Wang, Saiyu Qi,
and Xiaofeng Chen. “Efficient Multi-client Order-Revealing Encryption
and Its Applications”. In: Computer Security – ESORICS 2021. Springer
International Publishing, 2021, pp. 44–63. doi: 10.1007/978-3-030-
88428-4_3.

[Lyn18] Ben Lynn. Pairings-based Crypto (PBC). 2018. url: https://crypto.
stanford.edu/pbc/ (visited on 08/15/2018).

[MRS18] Matteo Maffei, Manuel Reinert, and Dominique Schröder. “On the Secu-
rity of Frequency-Hiding Order-Preserving Encryption”. In: Cryptology
and Network Security. Springer International Publishing, 2018, pp. 51–
70. doi: 10.1007/978-3-030-02641-7_3.

[McS09] Frank D McSherry. “Privacy integrated queries: an extensible platform
for privacy-preserving data analysis”. In: Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data. 2009. doi:
10.1145/1559845.1559850.

[MPRV09] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. “Com-
putational differential privacy”. In: Annual International Cryptology Con-
ference. Springer. 2009, pp. 126–142. doi: 10.1007/978-3-642-03356-
8_8.

[Mis+18] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and
Raluca Ada Popa. “Oblix: An efficient oblivious search index”. In: 2018
IEEE Symposium on Security and Privacy (SP). IEEE. 2018, pp. 279–
296. doi: 10.1109/SP.2018.00045.

[MCA07] Mohamed F. Mokbel, Chi-Yin Chow, and Walid G. Aref. “The New
Casper: A Privacy-Aware Location-Based Database Server”. In: 2007
IEEE 23rd International Conference on Data Engineering. 2007. doi:
10.1109/ICDE.2007.369052.

[MRS09] Ben Morris, Phillip Rogaway, and Till Stegers. “How to Encipher Mes-
sages on a Small Domain”. In: Advances in Cryptology - CRYPTO 2009.
Springer Berlin Heidelberg, 2009, pp. 286–302. doi: 10.1007/978-3-
642-03356-8_17.

[ML14] Marius Muja and David G. Lowe. “Scalable Nearest Neighbor Algo-
rithms for High Dimensional Data”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 36.11 (2014), pp. 2227–2240. doi:
10.1109/TPAMI.2014.2321376.

https://doi.org/10.1016/j.cose.2016.12.006
https://doi.org/10.1007/978-3-030-88428-4_3
https://doi.org/10.1007/978-3-030-88428-4_3
https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
https://doi.org/10.1007/978-3-030-02641-7_3
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1007/978-3-642-03356-8_8
https://doi.org/10.1007/978-3-642-03356-8_8
https://doi.org/10.1109/SP.2018.00045
https://doi.org/10.1109/ICDE.2007.369052
https://doi.org/10.1007/978-3-642-03356-8_17
https://doi.org/10.1007/978-3-642-03356-8_17
https://doi.org/10.1109/TPAMI.2014.2321376

142

[Mur+20] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel
Gruss, and Frank Piessens. “Plundervolt: Software-based Fault Injection
Attacks against Intel SGX”. In: 2020 IEEE Symposium on Security and
Privacy (SP). 2020, pp. 1466–1482. doi: 10.1109/SP40000.2020.
00057.

[NBK19] Oleksandr Narykov, Dmytro Bogatov, and Dmitry Korkin. “DISPOT:
a simple knowledge-based protein domain interaction statistical poten-
tial”. In: Bioinformatics 35.24 (July 2019), pp. 5374–5378. doi: 10.
1093/bioinformatics/btz587.

[NKW15] Muhammad Naveed, Seny Kamara, and Charles V Wright. “Inference
attacks on property-preserving encrypted databases”. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. 2015, pp. 644–655. doi: 10.1145/2810103.2813651.

[NBXO15] Batyrlan Nurbekov, Dmytro Bogatov, Jiacong S Xu, and Richard
Joseph O’Brien. “Investment Trading And Risk Management: Scientif-
ically Developing and Analyzing Trading Systems”. In: WPI Library
(2015). url: digital.wpi.edu/concern/parent/p2676w12m/file_
sets/gb19f6396.

[OSC04] Gultekin Ozsoyoglu, David A. Singer, and Sun S. Chung. “Anti-Tamper
Databases”. In: Data and Applications Security XVII: Status and Pros-
pects. Ed. by Sabrina De Capitani di Vimercati, Indrakshi Ray, and
Indrajit Ray. Boston, MA: Springer US, Jan. 2004, pp. 133–146. doi:
10.1007/1-4020-8070-0_10.

[Pap+16] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Rama-
chandran Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi,
and Saikrishna Badrinarayanan. “Big Data Analytics over Encrypted
Datasets with Seabed”. In: 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16). USENIX Association, 2016,
pp. 587–602.

[PBP10] Stavros Papadopoulos, Spiridon Bakiras, and Dimitris Papadias. “Near-
est Neighbor Search with Strong Location Privacy”. In: Proceedings of
the VLDB Endowment 3.1–2 (Sept. 2010), pp. 619–629. doi: 10.14778/
1920841.1920920.

[PBP19] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. “Arx: an en-
crypted database using semantically secure encryption”. In: Proceedings
of the VLDB Endowment 12.11 (2019), pp. 1664–1678. doi: 10.14778/
3342263.3342641.

https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1093/bioinformatics/btz587
https://doi.org/10.1093/bioinformatics/btz587
https://doi.org/10.1145/2810103.2813651
digital.wpi.edu/concern/parent/p2676w12m/file_sets/gb19f6396
digital.wpi.edu/concern/parent/p2676w12m/file_sets/gb19f6396
https://doi.org/10.1007/1-4020-8070-0_10
https://doi.org/10.14778/1920841.1920920
https://doi.org/10.14778/1920841.1920920
https://doi.org/10.14778/3342263.3342641
https://doi.org/10.14778/3342263.3342641

143

[PLZ13] Raluca Ada Popa, Frank H. Li, and Nickolai Zeldovich. “An Ideal-
Security Protocol for Order-Preserving Encoding”. In: 2013 IEEE Sym-
posium on Security and Privacy. 2013, pp. 463–477. doi: 10.1109/SP.
2013.38.

[PRZB11] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and
Hari Balakrishnan. “CryptDB: Protecting Confidentiality with Encryp-
ted Query Processing”. In: Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles. SOSP ’11. Association for
Computing Machinery, 2011, pp. 85–100. doi: 10 . 1145 / 2043556 .
2043566.

[PVC18] Christian Priebe, Kapil Vaswani, and Manuel Costa. “EnclaveDB: A
secure database using SGX”. In: 2018 IEEE Symposium on Security and
Privacy (SP). IEEE. 2018, pp. 264–278. doi: 10.1109/SP.2018.00025.

[QYL13] Wahbeh Qardaji, Weining Yang, and Ninghui Li. “Understanding hier-
archical methods for differentially private histograms”. In: Proceedings
of the VLDB Endowment 6.14 (2013), pp. 1954–1965. doi: 10.14778/
2556549.2556576.

[QA08] Yinian Qi and Mikhail J. Atallah. “Efficient Privacy-Preserving k-Near-
est-Neighbor Search”. In: 2008 The 28th International Conference on
Distributed Computing Systems. 2008, pp. 311–319. doi: 10 . 1109 /
ICDCS.2008.79.

[RACY16] Daniel S. Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhi-
movich. “POPE: Partial Order Preserving Encoding”. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. CCS ’16. Association for Computing Machinery, 2016,
pp. 1131–1142. doi: 10.1145/2976749.2978345.

[RKR21] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. “A Primer in BERT-
ology: What We Know About How BERT Works”. In: Transactions of
the Association for Computational Linguistics 8 (Jan. 2021), pp. 842–
866. doi: 10.1162/tacl_a_00349.

[Roy+20] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanava-
jjhala, and Somesh Jha. “Cryptϵ: Crypto-assisted differential privacy on
untrusted servers”. In: Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data. 2020, pp. 603–619. doi:
10.1145/3318464.3380596.

[Sah+18] Cetin Sahin, Tristan Allard, Reza Akbarinia, Amr El Abbadi, and Es-
ther Pacitti. “A Differentially Private Index for Range Query Processing
in Clouds”. In: 2018 IEEE 34th International Conference on Data En-
gineering (ICDE). 2018, pp. 857–868. doi: 10.1109/ICDE.2018.00082.

https://doi.org/10.1109/SP.2013.38
https://doi.org/10.1109/SP.2013.38
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1109/SP.2018.00025
https://doi.org/10.14778/2556549.2556576
https://doi.org/10.14778/2556549.2556576
https://doi.org/10.1109/ICDCS.2008.79
https://doi.org/10.1109/ICDCS.2008.79
https://doi.org/10.1145/2976749.2978345
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1145/3318464.3380596
https://doi.org/10.1109/ICDE.2018.00082

144

[Sah+16] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano
Tessaro. “TaoStore: Overcoming Asynchronicity in Oblivious Data Stor-
age”. In: 2016 IEEE Symposium on Security and Privacy (SP). 2016,
pp. 198–217. doi: 10.1109/SP.2016.20.

[SJB14] Bharath Kumar Samanthula, Wei Jiang, and Elisa Bertino. “Privacy-
preserving complex query evaluation over semantically secure encryp-
ted data”. In: European Symposium on Research in Computer Security.
Springer. 2014, pp. 400–418. doi: 10.1007/978-3-319-11203-9_23.

[SGF18] Sajin Sasy, Sergey Gorbunov, and Christopher Fletcher. “ZeroTrace :
Oblivious Memory Primitives from Intel SGX”. In: Network and Dis-
tributed System Security (NDSS) Symposium (Feb. 2018). doi: 10 .
14722/ndss.2018.23243.

[SKG20] Stephan van Schaik, Andrew Kwong, and Daniel Genkin. “SGAxe: How
SGX Fails in Practice”. In: 2020. url: sgaxe.com/files/SGAxe.pdf.

[SK96] Bruce Schneier and John Kelsey. “Unbalanced Feistel networks and
block cipher design”. In: Fast Software Encryption. Springer Berlin Hei-
delberg, 1996, pp. 121–144. doi: 10.1007/3-540-60865-6_49.

[SWG19] Michael Schwarz, Samuel Weiser, and Daniel Gruss. “Practical Enclave
Malware with Intel SGX”. In: Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer International Publishing, 2019,
pp. 177–196. doi: 10.1007/978-3-030-22038-9_9.

[Sch+17] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. “Malware Guard Extension: Using SGX to Con-
ceal Cache Attacks”. In: Detection of Intrusions and Malware, and Vul-
nerability Assessment. Springer International Publishing, 2017, pp. 3–
24. doi: 10.1007/978-3-319-60876-1_1.

[SYSC21] Ning Shen, Jyh-Haw Yeh, Hung-Min Sun, and Chien-Ming Chen. “A
Practical and Secure Stateless Order Preserving Encryption for Out-
sourced Databases”. In: 2021 IEEE 26th Pacific Rim International Sym-
posium on Dependable Computing (PRDC). 2021, pp. 133–142. doi:
10.1109/PRDC53464.2021.00025.

[SCSL11] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. “Oblivious
RAM with O(log3N) worst-case cost”. In: International Conference on
The Theory and Application of Cryptology and Information Security.
Springer. 2011, pp. 197–214. doi: 10.1007/978-3-642-25385-0_11.

[SSSS17] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
“Membership Inference Attacks Against Machine Learning Models”. In:
2017 IEEE Symposium on Security and Privacy (SP). 2017, pp. 3–18.
doi: 10.1109/SP.2017.41.

https://doi.org/10.1109/SP.2016.20
https://doi.org/10.1007/978-3-319-11203-9_23
https://doi.org/10.14722/ndss.2018.23243
https://doi.org/10.14722/ndss.2018.23243
sgaxe.com/files/SGAxe.pdf
https://doi.org/10.1007/3-540-60865-6_49
https://doi.org/10.1007/978-3-030-22038-9_9
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1109/PRDC53464.2021.00025
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1109/SP.2017.41

145

[Ska+19] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery,
Josep Torrellas, and Christopher W. Fletcher. “MicroScope: Enabling
Microarchitectural Replay Attacks”. In: Proceedings of the 46th Inter-
national Symposium on Computer Architecture. ISCA ’19. Association
for Computing Machinery, 2019, pp. 318–331. doi: 10.1145/3307650.
3322228.

[SR20] Congzheng Song and Ananth Raghunathan. “Information Leakage in
Embedding Models”. In: Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security. Association for Com-
puting Machinery, 2020, pp. 377–390. doi: 10.1145/3372297.3417270.

[ST15] National Institute of Standards and Technology. Secure Hash Standard
(SHS). 2015. doi: 10.6028/NIST.FIPS.180-4.

[Ste+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. “Path ORAM: An Extremely
Simple Oblivious RAM Protocol”. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security. CCS
’13. Association for Computing Machinery, 2013, pp. 299–310. doi: 10.
1145/2508859.2516660.

[SSS12] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. “Towards Practi-
cal Oblivious RAM”. In: Network and Distributed System Security Sym-
posium (NDSS). 2012.

[SV11] Siddharth Suri and Sergei Vassilvitskii. “Counting triangles and the
curse of the last reducer”. In: Proceedings of the 20th international con-
ference on World wide web. 2011, pp. 607–614. doi: 10.1145/1963405.
1963491.

[TYM14] Isamu Teranishi, Moti Yung, and Tal Malkin. “Order-Preserving En-
cryption Secure Beyond One-Wayness”. In: Advances in Cryptology –
ASIACRYPT 2014. Springer Berlin Heidelberg, 2014, pp. 42–61. doi:
10.1007/978-3-662-45608-8_3.

[Tra17] Transparent California. California public pay and pension 2017 dataset.
https://transparentcalifornia.com/salaries/2017/state-of-
california/. 2017.

[Tra19] Transparent California. California public pay and pension 2019 dataset.
https://transparentcalifornia.com/salaries/2019/state-of-
california/. 2019.

[Tur+18] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry McKay,
Mary Baish, and Michael Boyle. Recommendation for the Entropy So-
urces Used for Random Bit Generation. 2018. doi: 10.6028/NIST.SP.
800-90B.

https://doi.org/10.1145/3307650.3322228
https://doi.org/10.1145/3307650.3322228
https://doi.org/10.1145/3372297.3417270
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/1963405.1963491
https://doi.org/10.1145/1963405.1963491
https://doi.org/10.1007/978-3-662-45608-8_3
https://transparentcalifornia.com/salaries/2017/state-of-california/
https://transparentcalifornia.com/salaries/2017/state-of-california/
https://transparentcalifornia.com/salaries/2019/state-of-california/
https://transparentcalifornia.com/salaries/2019/state-of-california/
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.6028/NIST.SP.800-90B

146

[US 18] U.S. Census Bureau. American Community Survey Public Use Micro-
data Sample. https://www.census.gov/programs-surveys/acs/
microdata.html. 2018.

[Vai11] Vinod Vaikuntanathan. “Computing blindfolded: New developments in
fully homomorphic encryption”. In: 2011 IEEE 52nd Annual Symposium
on Foundations of Computer Science. IEEE. 2011, pp. 5–16. doi: 10.
1109/FOCS.2011.98.

[Van+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Ka-
sikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Ya-
rom, and Raoul Strackx. “Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution”. In: Proceedings
of the 27th USENIX Security Symposium. USENIX Association, Aug.
2018. isbn: 9781931971461.

[Van+20] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Ma-
rina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss,
and Frank Piessens. “LVI: Hijacking Transient Execution through Mi-
croarchitectural Load Value Injection”. In: 2020 IEEE Symposium on
Security and Privacy (SP). 2020, pp. 54–72. doi: 10.1109/SP40000.
2020.00089.

[Vau02] Serge Vaudenay. “Security Flaws Induced by CBC Padding - Applica-
tions to SSL, IPSEC, WTLS . . . ” In: Proceedings of the International
Conference on the Theory and Applications of Cryptographic Techniques:
Advances in Cryptology. EUROCRYPT ’02. Springer-Verlag, 2002. doi:
10.1007/3-540-46035-7_35.

[VGG19] Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gorbunov.
“StealthDB: a scalable encrypted database with full SQL query sup-
port”. In: Proceedings on Privacy Enhancing Technologies 2019 (2019),
pp. 370–388. doi: 10.2478/popets-2019-0052.

[Wal77] Alastair J. Walker. “An Efficient Method for Generating Discrete Ran-
dom Variables with General Distributions”. In: ACM Transactions on
Mathematical Software 3.3 (Sept. 1977), pp. 253–256. doi: 10.1145/
355744.355749.

[WHL20] Boyang Wang, Yantian Hou, and Ming Li. “QuickN: Practical and
Secure Nearest Neighbor Search on Encrypted Large-Scale Data”. In:
IEEE Transactions on Cloud Computing (2020). doi: 10.1109/TCC.
2020.3009961.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Ef-
ficient MultiParty computation toolkit. https://github.com/emp-
toolkit. 2016.

https://www.census.gov/programs-surveys/acs/microdata.html
https://www.census.gov/programs-surveys/acs/microdata.html
https://doi.org/10.1109/FOCS.2011.98
https://doi.org/10.1109/FOCS.2011.98
https://doi.org/10.1109/SP40000.2020.00089
https://doi.org/10.1109/SP40000.2020.00089
https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.2478/popets-2019-0052
https://doi.org/10.1145/355744.355749
https://doi.org/10.1145/355744.355749
https://doi.org/10.1109/TCC.2020.3009961
https://doi.org/10.1109/TCC.2020.3009961
https://github.com/emp-toolkit
https://github.com/emp-toolkit

147

[WZ18] Xingchen Wang and Yunlei Zhao. “Order-Revealing Encryption: File-
Injection Attack and Forward Security”. In: Computer Security. Springer
International Publishing, 2018, pp. 101–121. doi: 10.1007/978-3-319-
98989-1_6.

[Wel+18] Sean Welleck, Zixin Yao, Yu Gai, Jialin Mao, Zheng Zhang, and Kyun-
ghyun Cho. “Loss Functions for Multiset Prediction”. In: Proceedings
of the 32nd International Conference on Neural Information Processing
Systems. NIPS’18. Curran Associates Inc., 2018, pp. 5788–5797.

[WL83] M. Anthony Wong and Tom Lane. “A kth Nearest Neighbour Cluster-
ing Procedure”. In: Journal of the Royal Statistical Society. Series B
(Methodological) 45.3 (1983), pp. 362–368. issn: 00359246.

[WCKM09] Wai Kit Wong, David Wai-lok Cheung, Ben Kao, and Nikos Mamoulis.
“Secure KNN Computation on Encrypted Databases”. In: Proceedings
of the 2009 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’09. Association for Computing Machinery, 2009,
pp. 139–152. doi: 10.1145/1559845.1559862.

[Woz+13] Sander Wozniak, Michael Rossberg, Sascha Grau, Ali Alshawish, and
Guenter Schaefer. “Beyond the Ideal Object: Towards Disclosure-Re-
silient Order-Preserving Encryption Schemes”. In: Proceedings of the
2013 ACM Workshop on Cloud Computing Security Workshop. CCSW
’13. Association for Computing Machinery, 2013, pp. 89–100. doi: 10.
1145/2517488.2517496.

[XY12] Liangliang Xiao and I-Ling Yen. A Note for the Ideal Order-Preserving
Encryption Object and Generalized Order-Preserving Encryption. Cryp-
tology ePrint Archive, Report 2012/350. https://ia.cr/2012/350.
2012.

[XYH12] Liangliang Xiao, I-Ling Yen, and Dung T. Huynh. Extending Order Pre-
serving Encryption for Multi-User Systems. Cryptology ePrint Archive,
Report 2012/192. https://ia.cr/2012/192. 2012.

[XWG10] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. “Differential pri-
vacy via wavelet transforms”. In: IEEE Transactions on knowledge and
data engineering 23.8 (2010), pp. 1200–1214. doi: 10.1109/TKDE.2010.
247.

[Xie+16] Dong Xie, Guanru Li, Bin Yao, Xuan Wei, Xiaokui Xiao, Yunjun Gao,
and Minyi Guo. “Practical private shortest path computation based on
Oblivious Storage”. In: 2016 IEEE 32nd International Conference on
Data Engineering (ICDE). 2016, pp. 361–372. doi: 10.1109/ICDE.
2016.7498254.

https://doi.org/10.1007/978-3-319-98989-1_6
https://doi.org/10.1007/978-3-319-98989-1_6
https://doi.org/10.1145/1559845.1559862
https://doi.org/10.1145/2517488.2517496
https://doi.org/10.1145/2517488.2517496
https://ia.cr/2012/350
https://ia.cr/2012/192
https://doi.org/10.1109/TKDE.2010.247
https://doi.org/10.1109/TKDE.2010.247
https://doi.org/10.1109/ICDE.2016.7498254
https://doi.org/10.1109/ICDE.2016.7498254

148

[XPHF19] Min Xu, Antonis Papadimitriou, Andreas Haeberlen, and Ariel Joseph
Feldman. “Hermetic: Privacy-preserving distributed analytics without
(most) side channels”. In: 2019. url: haeberlen.cis.upenn.edu/
papers/hermetic-tr.pdf.

[YK21] JiHye Yang and Kee Sung Kim. “Practical Frequency-Hiding Order-
Preserving Encryption with Improved Update”. In: Security and Com-
munication Networks 2021 (Dec. 2021). doi: 10.1155/2021/1160305.

[YLX13] Bin Yao, Feifei Li, and Xiaokui Xiao. “Secure nearest neighbor revis-
ited”. In: 2013 IEEE 29th International Conference on Data Engineering
(ICDE). 2013, pp. 733–744. doi: 10.1109/ICDE.2013.6544870.

[YMMS21] Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, and Reza Shokri.
Enhanced Membership Inference Attacks against Machine Learning Mo-
dels. 2021. doi: 10.48550/ARXIV.2111.09679.

[YGFJ18] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. “Pri-
vacy Risk in Machine Learning: Analyzing the Connection to Overfit-
ting”. In: 2018 IEEE 31st Computer Security Foundations Symposium
(CSF). 2018, pp. 268–282. doi: 10.1109/CSF.2018.00027.

[YPBV14] Xun Yi, Russell Paulet, Elisa Bertino, and Vijay Varadharajan. “Prac-
tical k nearest neighbor queries with location privacy”. In: 2014 IEEE
30th International Conference on Data Engineering. 2014, pp. 640–651.
doi: 10.1109/ICDE.2014.6816688.

[YPBV16] Xun Yi, Russell Paulet, Elisa Bertino, and Vijay Varadharajan. “Practi-
cal Approximate k Nearest Neighbor Queries with Location and Query
Privacy”. In: IEEE Transactions on Knowledge and Data Engineering
28.6 (2016), pp. 1546–1559. doi: 10.1109/TKDE.2016.2520473.

[Yu+21] Xixun Yu, Yidan Hu, Rui Zhang, Zheng Yan, and Yanchao Zhang. “Se-
cure Outsourced Top-k Selection Queries against Untrusted Cloud Ser-
vice Providers”. In: 2021 IEEE/ACM 29th International Symposium on
Quality of Service (IWQOS). 2021, pp. 1–10. doi: 10.1109/IWQOS52092.
2021.9521321.

[Zha+22] Yu Zhan, Danfeng Shen, Pu Duan, Benyu Zhang, Zhiyong Hong, and
Baocang Wang. “MDOPE: Efficient multi-dimensional data order pre-
serving encryption scheme”. In: Information Sciences 595 (2022). doi:
10.1016/j.ins.2022.03.001.

[ZRL21] Songnian Zhang, Suprio Ray, and Rongxing Lu. “SOREL: Efficient
and Secure ORE-based Range Query over Outsourced Data”. In: IEEE
Transactions on Big Data (2021), pp. 1–1. doi: 10.1109/TBDATA.2021.
3089986.

haeberlen.cis.upenn.edu/papers/hermetic-tr.pdf
haeberlen.cis.upenn.edu/papers/hermetic-tr.pdf
https://doi.org/10.1155/2021/1160305
https://doi.org/10.1109/ICDE.2013.6544870
https://doi.org/10.48550/ARXIV.2111.09679
https://doi.org/10.1109/CSF.2018.00027
https://doi.org/10.1109/ICDE.2014.6816688
https://doi.org/10.1109/TKDE.2016.2520473
https://doi.org/10.1109/IWQOS52092.2021.9521321
https://doi.org/10.1109/IWQOS52092.2021.9521321
https://doi.org/10.1016/j.ins.2022.03.001
https://doi.org/10.1109/TBDATA.2021.3089986
https://doi.org/10.1109/TBDATA.2021.3089986

149

[Zhe+17] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. “Opaque: An Oblivious and En-
crypted Distributed Analytics Platform”. In: Proceedings of the 14th
USENIX Conference on Networked Systems Design and Implementa-
tion. NSDI’17. USENIX Association, 2017, pp. 283–298.

[Zhu+15] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba,
and S. Fidler. “Aligning Books and Movies: Towards Story-Like Visual
Explanations by Watching Movies and Reading Books”. In: 2015 IEEE
International Conference on Computer Vision (ICCV). IEEE Computer
Society, Dec. 2015, pp. 19–27. doi: 10.1109/ICCV.2015.11.

[ZXT13] Youwen Zhu, Rui Xu, and Tsuyoshi Takagi. “Secure K-NN Computation
on Encrypted Cloud Data without Sharing Key with Query Users”. In:
Proceedings of the 2013 International Workshop on Security in Cloud
Computing. Cloud Computing ’13. Association for Computing Machin-
ery, 2013, pp. 55–60. doi: 10.1145/2484402.2484415.

https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1145/2484402.2484415

Curriculum Vitæ
Dmytro BOGATOV
Software Developer at Amazon |
Ph.D. in Database Security from Boston University
dbogatov.org � � github.com/dbogatov � +1 857 777 8350
� linkedin.com/in/dmytrobogatov � dmytro@dbogatov.org
� Google Scholar � Boston, MA � Proud Ukrainian

I am originally from Ukraine. I have completed Bachelor’s, Master’s and Ph.D. in Computer
Science. Working on Doctorate, I have defended the thesis “Secure and Efficient Query Pro-
cessing in Outsourced Databases” [Bog22], advised by George Kollios, Professor at Boston
University. Aside fromwork, I am serving as a Director and Secretary forMriya Inc. � non-
profit, managing shipments of medical supplies and equipment to Ukrainianmilitary, terri-
torial defense and civilians affected by the war.

� SKILLS
Programming C#, TypeScript / JavaScript, Python, Swift, Java, C/C++, HTML, SQL,

LATEX, Go, Bash/ZSH, x86 ASM
Frameworks .NET Core, ASP MVC, SGX, xUnit, Angular, boost::

Common skills git, Gerrit, docker, bash, console, VS Code, unit testing
DevOps Ubuntu / CentOS, Kubernetes, CI / CD, NGINX, GitLab admin

Graduate classes Advanced Algorithms, Cryptography, Advanced Database Systems,
Advanced Operating Systems, Distributed Systems, Compiler De-
sign, Applied Cryptography, Optimization Methods

� EDUCATION
2013 Kyiv High school (Lyceum 157) diploma. High distinction. GPA 4.00.
2017 WPI Bachelor of Science in Computer Science. High distinction. GPA 3.99.
2019 BU Master of Science in Computer Science with a specialization in Cyber Se-

curity. GPA 4.00.
2022 BU Doctor of Philosophy in Computer Science (Database Security).

� PUBLICATIONS
[Bog22] D. Bogatov. “Secure and Efficient Query Processing in Outsourced Databases”.

PhD thesis. May 2022. DOI: 10.48550/arXiv.2206.10753.

150

https://dbogatov.org
https://www.github.com/dbogatov
https://www.linkedin.com/in/dmytrobogatov
mailto:dmytro@dbogatov.org
https://scholar.google.com/citations?user=Mq8ButkAAAAJ
https://mriya-ua.org
https://doi.org/10.48550/arXiv.2206.10753

[BKOZ22] D. Bogatov, G. Kollios, A. O’Neill, and H. Zamani. “k-anon: Secure Similarity
Search in Outsourced Databases”. Apr. 2022.

[BCET21] D. Bogatov, A. D. Caro, K. Elkhiyaoui, and B. Tackmann. “Anonymous Transac-
tions with Revocation and Auditing in Hyperledger Fabric”. In: Cryptology and
Network Security. Springer International Publishing, 2021, pp. 435–459. DOI:10.
1007/978-3-030-92548-2_23.

[Bog+21] D. Bogatov, G. Kellaris, G. Kollios, K. Nissim, andA. O’Neill. “Epsolute: Efficiently
Querying Databases While Providing Differential Privacy”. In: Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security (CCS
’2021). 2021. DOI: 10.1145/3460120.3484786.

[BKR19] D. Bogatov, G. Kollios, and L. Reyzin. “A Comparative Evaluation of Order-Re-
vealing Encryption Schemes andSecure Range-Query Protocols”. In:Proc. VLDB
Endow. 12.8 (2019), pp. 933–947. DOI: 10.14778/3324301.3324309.

[NBK19] O. Narykov, D. Bogatov, and D. Korkin. “DISPOT: A simple knowledge-based
protein domain interaction statistical potential”. In: Bioinformatics (July 2019).
DOI: 10.1093/bioinformatics/btz587.

[Bog17] D. Bogatov. “Analysis of a Dynamic Voluntary Contribution Mechanism Public
Good Game”. In: IPE Journal 26 (2017).

[BH16] D. Bogatov and J. R. Hennessy. “Data MATTERS: Customizing Economic Indices
to Measure State Competitiveness”. In:WPI Library (2016).

[NBXO15] B. Nurbekov, D. Bogatov, J. S. Xu, and R. J. O’Brien. “Investment Trading And
RiskManagement: ScientificallyDeveloping andAnalyzingTradingSystems”. In:
WPI Library (2015).

� CONFERENCES (? PRESENTED A POSTER, PRESENTATION OR A LIGHTNING TALK)

? Encrypted Search Workshop at Brown
∠ EUROCRYPT 2019, Darmstadt, Germany
? Northeastern Database Day 2019 at MIT
? VLDB 2019, Los Angeles, CA
? CANS 2021, Vienna, Austria (virtual)
? ACM CCS 2021, Seoul, Korea (virtual)

∠ Second Workshop on Encryption for Se-
cure Search, Bertinoro, Italy

? 23rd Annual Issues in Political Economy
Conference, Washington, DC

? 2016 IEEE MIT Undergraduate Research
Technology Conference, Cambridge, MA

� PAPER REVIEWS
2019 IEEE ICDE
2020 SIGMOD/PODS
2021 SIGMOD/PODS

2021 SIGMOD Repro
2022 SIGMOD/PODS
2022 IEEE ICDE

2022 SIGMOD Repro
2022 IEEE TDSC
2023 SIGMOD/PODS

151

https://doi.org/10.1007/978-3-030-92548-2_23
https://doi.org/10.1007/978-3-030-92548-2_23
https://doi.org/10.1145/3460120.3484786
https://doi.org/10.14778/3324301.3324309
https://doi.org/10.1093/bioinformatics/btz587

� PROFESSIONAL EXPERIENCE (RECENT / RELEVANT)
Present Software Development Engineer II (Redshift team), AMAZONWEB

SERVICES, Boston, MA
May 2022 ∠ Query processing optimization

∠ Security and Privacy at Redshift
research databases big data performance distributed systems

Sep 2021 Software Developer Intern (Redshift team), AMAZONWEB SERVICES, Palo
Alto, CA (virtual)

Jun 2021 ∠ Query processing optimization
∠ Row Level Security (RLS) �

research databases big data performance distributed systems

Nov 2020 Software Developer Intern (Redshift team), AMAZONWEB SERVICES, Palo
Alto, CA (virtual)

Aug 2020 ∠ Query processing optimization
∠ Row Level Security (RLS) �

research databases big data performance distributed systems

Dec 2019 Applied Scientist Intern (Crypto Algorithms team), AMAZONWEB SERVICES,
Seattle, WA

Oct 2019 ∠ Computations over encrypted data, SSE schemes
research encrypted search databases

Sep 2019 Cloud & Computing Infrastructure Intern (Crypto), IBM RESEARCH—
ZÜRICH, Rüschlikon, ZH, Switzerland

Jul 2019 ∠ Anonymous Blockchain Transactions with Revocation and Auditing
∠ Developed production-grade cryptographic Go library �

research blockchain hyperledger fabric delegatable credentials Go

Present All my past experiences, ALL OVER THE WORLD, USA, Ukraine, Switzerland
Sep 2014 ∠ Ph.D. / Research Assistant @ Boston University (Boston, MA, USA)

∠ Web / DevOps developer @ RedwoodEDA (Shrewsbury, MA, USA)
∠ Co-founder / web developer @ Shevastream (Kyiv, Ukraine)
∠ Web developer@Worcester Polytechnic Institute (Worcester, MA, USA)
∠ Web developer @ TradeStation Securities (Plantation, FL, USA)
∠ Senior TeachingAssistant@CSDepartmentatWPI (Worcester,MA,USA)

teaching web development startup devops

152

https://docs.aws.amazon.com/redshift/latest/dg/t_rls.html
https://docs.aws.amazon.com/redshift/latest/dg/t_rls.html
https://github.com/IBM/dac-lib

� PROJECTS (RECENT / RELEVANT)
EPSOLUTE: DIFFERENTIALLY PRIVATE SECURE RANGE QUERIES SEP 2018 — OCT 2021
github.com/epsolute � publication �

Developed ORAM-based differential privacy range and point query engine
C++ ORAM differential privacy range queries

ANONYMOUS TRANSACTIONS IN BLOCKCHAINS JUN 2019 — DEC 2021
github.com/IBM/dac-lib � publication �

Developed production-grade Go cryptographic library
Go blockchains research cryptography privacy

EVALUATION OF SECURE RANGE QUERY PROTOCOLS MAY 2017 — FEB 2018
ore.dbogatov.org � publication �

Analyzed, implemented and evaluated 5 ORE schemes and 5 protocols
C# .NET Core research ORE range query protocols

STATUS SITE FEB 2017 — SEP 2017
status.dbogatov.org � source code �

Amulti-component system for collecting and analyzing the infrastructure health
C# .NET Core ASP MVC TypeScript Kubernetes micro-services

� LANGUAGES

English ○ ○ ○ ○ ○
Ukrainian ○ ○ ○ ○ ○
Russian ○ ○ ○ ○ ○

� SELECT AWARDS

? pVLDB 2021 Reproducibility Award at BU
∠ Chair’s Fellowship at BU
∠ “Outstanding Junior” at WPI

� REFEREES
George Kollios �
Professor, BU

� gkollios@bu.edu
� Scholar Profile �

Leonid Reyzin �
Professor, BU

� reyzin@bu.edu
� Scholar Profile �

Manos Athanassoulis �
Assistant Professor, BU

� mathan@bu.edu
� Scholar Profile �

153

https://github.com/epsolute
https://dbogatov.org/assets/docs/epsolute.pdf
https://github.com/IBM/dac-lib
https://dbogatov.org/assets/docs/dac-fabric.pdf
https://ore.dbogatov.org
https://dbogatov.org/assets/docs/ore-benchmark.pdf
https://status.dbogatov.org
https://github.com/dbogatov/status-site
https://scholar.google.com/citations?user=0VFi-vAAAAAJ
mailto:gkollios@bu.edu
https://scholar.google.com/citations?user=0VFi-vAAAAAJ
https://scholar.google.com/citations?user=1KRXBIwAAAAJ
mailto:reyzin@bu.edu
https://scholar.google.com/citations?user=1KRXBIwAAAAJ
https://scholar.google.com/citations?user=RyXHY68AAAAJ
mailto:mathan@bu.edu
https://scholar.google.com/citations?user=RyXHY68AAAAJ

	Contents
	List of Algorithms
	List of Tables
	List of Figures
	Introduction
	Model
	Outsourced database model
	Security model
	Query types

	Thesis structure
	Works completed during the Ph.D. program

	Background
	Symmetric encryption
	Security
	Components

	Oblivious Random Access Machine
	PathORAM

	Differential Privacy
	DP sanitizers
	Answering point and range queries with differential privacy
	Composition

	Trusted Execution Environments
	Software Guard Extensions
	Issues with sgx

	Related work
	Range query security in a snapshot model
	Range query security in a persistent model
	Obliviousness and volume-hiding without enclave
	Enclave-based solutions

	kNN query security in a snapshot model

	Range queries in the snapshot model
	Introduction
	Security Perspective
	A note on variable-length inputs

	OPE and ORE Schemes
	BCLO OPE
	Security
	Analysis and implementation challenges

	CLWW ORE
	Security
	Analysis and implementation challenges

	Lewi-Wu ORE
	Security
	Analysis and implementation challenges

	CLOZ ORE
	Security
	Analysis and implementation challenges

	FH-OPE
	Security
	Analysis and implementation challenges

	Secure Range Query Protocols
	Range query protocol from ORE
	Security

	Kerschbaum-Tueno
	Security
	Analysis and implementation challenges

	POPE
	Security
	Analysis and implementation challenges

	Logarithmic-BRC
	Security
	Analysis and implementation challenges

	The two extremes
	No encryption
	ORAM

	Evaluation
	Implementation
	Primitives
	Schemes and protocols
	Simulations

	Setup
	Results
	Primitive usage by schemes
	Benchmarks of schemes and primitives
	Protocols

	Remarks and conclusion

	Range queries in the persistent model
	Introduction
	Differentially private outsourced database systems
	Adversarial model
	On impossibility of adaptive queries

	Query types
	Measuring Efficiency

	Epsolute
	General construction
	Security
	Efficiency
	Extending to multiple attributes
	Epsolute for point queries
	Epsolute for range queries

	An efficient Parallel Epsolute
	No-gamma-method: dp structure per oram
	Gamma-method: shared dp structure
	Practical improvements
	ORAM request batching
	Lightweight ORAM servers

	Experimental Evaluation
	Data sets
	Default setting
	Experiment stages
	RDBMS, Linear Scan and Shrinkwrap
	Results and Observations

	Conclusion and Future Work

	kNN queries in the snapshot model
	Introduction
	Distance Comparison Preserving Encryption
	DCPE construction
	DCPE security
	DCPE implementation and benchmarks

	kNN search accuracy
	Secure kNN protocol
	Experimental evaluation
	Ranking quality metrics

	Results for varying

	Security against attacks
	Black-box model inversion attack
	Experimental evaluation
	Attack efficiency metrics
	Baselines
	Public model
	Private model

	Search accuracy against security tradeoff
	Conclusions
	Future Work

	Conclusions and Future Work
	Practicality and reproducibility
	Practicality of property-preserving encryption
	Practicality of using ``heavy'' primitives and protocols
	More query types

	Abstract of bogatov-idemix-2020
	Abstract of dispot
	Bibliography
	Curriculum Vitae

